def runAndreaFeatures(path_train,path_test, path_features, dataset,n=1000,iter_num=5): features=[] with open(path_features,'r') as f_in: for line in f_in: for token in line.split(): features.append(token) model = Perceptron.train_from_disk(path_train,dataset.get_classes_list() ,features[0:n], iter_num) print Perceptron.test_from_disk(model, path_test,features[0:n])
def runRainbowFeatures(path_train,path_test, path_features, dataset,n=1000,iter_num=5): features=[] with open(path_features,'r') as f_in: for line in f_in: features.append(line.split()[1]) model = Perceptron.train_from_disk(path_train,dataset.get_classes_list() ,features[0:n], iter_num) for k,v in model.items(): print k,v print Perceptron.test_from_disk(model, path_test,features[0:n])