labeledImage=annoImg_fn, level=None, collapse=None) #defField = deformationField(sink = [], transformParameterFile = transformParameterFN, transformDirectory = None, resultDirectory = transformResultDir) #defDistance = deformationDistance(defField, sink = None, scale = None) #print 'Mean Deformation distance= %d' %defDistance.mean() ids, counts = countPointsInRegions(points, labeledImage=annoImg_fn, intensities=None, collapse=None) #Table generation table = numpy.zeros(ids.shape, dtype=[('id', 'int64'), ('counts', 'f8'), ('name', 'a256')]) table['id'] = ids table['counts'] = counts table['name'] = labelToName(ids) io.writeTable(tableFN, table) beforeAlign = plt.fredOverlayPoints(auto_R_fn, pointsRe, pointColor=[200, 0, 0]) io.writeData(os.path.join(resultDir, 'BeforeAlign.tif'), beforeAlign) afterAlign = plt.fredOverlayPoints(refImg_fn, points, pointColor=[200, 0, 0]) io.writeData(os.path.join(resultDir, 'AfterAlign.tif'), afterAlign)
table = numpy.zeros(ids0.shape, dtype = dtypes) table["id"] = ids0; table["structureOrder"] = labelToStructureOrder(ids0); table["mean1"] = pc1i0.mean(axis = 1)/1000000; table["std1"] = pc1i0.std(axis = 1)/1000000; table["mean2"] = pc2i0.mean(axis = 1)/1000000; table["std2"] = pc2i0.std(axis = 1)/1000000; table["pvalue"] = pvalsi0; table["qvalue"] = qvalsi0; table["psign"] = psigni0; for i in range(len(group1_roi)): table["count1_%d" % i] = pc10[:,i]; for i in range(len(group2_roi)): table["count2_%d" % i] = pc20[:,i]; table["name"] = labelToName(ids0); #sort by qvalue ii = numpy.argsort(pvalsi0); tableSorted = table.copy(); tableSorted = tableSorted[ii]; with open(os.path.join(baseDirectory, 'counts-intensity_table.csv'),'w') as f: f.write(', '.join([str(item) for item in table.dtype.names])); f.write('\n'); for sublist in tableSorted: f.write(', '.join([str(item) for item in sublist])); f.write('\n'); f.close();
def output_analysis( threshold=(20, 900), row=(3, 3), check_cell_detection=False, **params): """Wrapper for analysis: Inputs ------------------- Thresholding: the threshold parameter is either intensity or size in voxel, depending on the chosen "row" Row: row = (0,0) : peak intensity from the raw data row = (1,1) : peak intensity from the DoG filtered data row = (2,2) : peak intensity from the background subtracted data row = (3,3) : voxel size from the watershed Check Cell detection: (For the testing phase only, remove when running on the full size dataset) """ dct = pth_update(set_parameters_for_clearmap(**params)) points, intensities = io.readPoints( dct["ImageProcessingParameter"]["sink"]) #Thresholding: the threshold parameter is either intensity or size in voxel, depending on the chosen "row" #row = (0,0) : peak intensity from the raw data #row = (1,1) : peak intensity from the DoG filtered data #row = (2,2) : peak intensity from the background subtracted data #row = (3,3) : voxel size from the watershed points, intensities = thresholdPoints(points, intensities, threshold=threshold, row=row) #points, intensities = thresholdPoints(points, intensities, threshold = (20, 900), row = (2,2)); io.writePoints(dct["FilteredCellsFile"], (points, intensities)) ## Check Cell detection (For the testing phase only, remove when running on the full size dataset) ####################### # if check_cell_detection: # import ClearMap.Visualization.Plot as plt # pointSource= os.path.join(BaseDirectory, FilteredCellsFile[0]); # data = plt.overlayPoints(cFosFile, pointSource, pointColor = None, **cFosFileRange); # io.writeData(os.path.join(BaseDirectory, "cells_check.tif"), data); # Transform point coordinates ############################# points = io.readPoints( dct["CorrectionResamplingPointsParameter"]["pointSource"]) points = resamplePoints(**dct["CorrectionResamplingPointsParameter"]) points = transformPoints( points, transformDirectory=dct["CorrectionAlignmentParameter"] ["resultDirectory"], indices=False, resultDirectory=None) dct["CorrectionResamplingPointsInverseParameter"]["pointSource"] = points points = resamplePointsInverse( **dct["CorrectionResamplingPointsInverseParameter"]) dct["RegistrationResamplingPointParameter"]["pointSource"] = points points = resamplePoints(**dct["RegistrationResamplingPointParameter"]) points = transformPoints( points, transformDirectory=dct["RegistrationAlignmentParameter"] ["resultDirectory"], indices=False, resultDirectory=None) io.writePoints(dct["TransformedCellsFile"], points) # Heat map generation ##################### points = io.readPoints(dct["TransformedCellsFile"]) intensities = io.readPoints(dct["FilteredCellsFile"][1]) #Without weigths: vox = voxelize(points, dct["AtlasFile"], **dct["voxelizeParameter"]) if not isinstance(vox, str): io.writeData(os.path.join(dct["OutputDirectory"], "cells_heatmap.tif"), vox.astype("int32")) #With weigths from the intensity file (here raw intensity): dct["voxelizeParameter"]["weights"] = intensities[:, 0].astype(float) vox = voxelize(points, dct["AtlasFile"], **dct["voxelizeParameter"]) if not isinstance(vox, str): io.writeData( os.path.join(dct["OutputDirectory"], "cells_heatmap_weighted.tif"), vox.astype("int32")) #Table generation: ################## #With integrated weigths from the intensity file (here raw intensity): try: ids, counts = countPointsInRegions(points, labeledImage=dct["AnnotationFile"], intensities=intensities, intensityRow=0) table = numpy.zeros(ids.shape, dtype=[("id", "int64"), ("counts", "f8"), ("name", "a256")]) table["id"] = ids table["counts"] = counts table["name"] = labelToName(ids) io.writeTable( os.path.join(dct["OutputDirectory"], "Annotated_counts_intensities.csv"), table) #Without weigths (pure cell number): ids, counts = countPointsInRegions(points, labeledImage=dct["AnnotationFile"], intensities=None) table = numpy.zeros(ids.shape, dtype=[("id", "int64"), ("counts", "f8"), ("name", "a256")]) table["id"] = ids table["counts"] = counts table["name"] = labelToName(ids) io.writeTable( os.path.join(dct["OutputDirectory"], "Annotated_counts.csv"), table) except: print("Table not generated.\n") print("Analysis Completed") return
def output_analysis_helper(threshold=(20, 900), row=(3, 3), **params): ''' Function to change elastix result directory before running 'step 6' i.e. point transformix to atlas. ''' dct = pth_update(set_parameters_for_clearmap(**params)) dct['RegistrationAlignmentParameter']["resultDirectory"] = os.path.join( params["outputdirectory"], 'clearmap_cluster_output/elastix_auto_to_sim_atlas') points, intensities = io.readPoints( dct['ImageProcessingParameter']["sink"]) #Thresholding: the threshold parameter is either intensity or size in voxel, depending on the chosen "row" #row = (0,0) : peak intensity from the raw data #row = (1,1) : peak intensity from the DoG filtered data #row = (2,2) : peak intensity from the background subtracted data #row = (3,3) : voxel size from the watershed points, intensities = thresholdPoints(points, intensities, threshold=threshold, row=row) #points, intensities = thresholdPoints(points, intensities, threshold = (20, 900), row = (2,2)); io.writePoints(dct['FilteredCellsFile'], (points, intensities)) # Transform point coordinates ############################# points = io.readPoints( dct['CorrectionResamplingPointsParameter']["pointSource"]) points = resamplePoints(**dct['CorrectionResamplingPointsParameter']) points = transformPoints( points, transformDirectory=dct['CorrectionAlignmentParameter'] ["resultDirectory"], indices=False, resultDirectory=None) dct['CorrectionResamplingPointsInverseParameter']["pointSource"] = points points = resamplePointsInverse( **dct['CorrectionResamplingPointsInverseParameter']) dct['RegistrationResamplingPointParameter']["pointSource"] = points points = resamplePoints(**dct['RegistrationResamplingPointParameter']) points = transformPoints( points, transformDirectory=dct['RegistrationAlignmentParameter'] ["resultDirectory"], indices=False, resultDirectory=None) io.writePoints(dct['TransformedCellsFile'], points) # Heat map generation ##################### points = io.readPoints(dct['TransformedCellsFile']) intensities = io.readPoints(dct['FilteredCellsFile'][1]) #Without weigths: vox = voxelize(points, dct['AtlasFile'], **dct['voxelizeParameter']) if not isinstance(vox, basestring): io.writeData(os.path.join(dct['OutputDirectory'], 'cells_heatmap.tif'), vox.astype('int32')) #With weigths from the intensity file (here raw intensity): dct['voxelizeParameter']["weights"] = intensities[:, 0].astype(float) vox = voxelize(points, dct['AtlasFile'], **dct['voxelizeParameter']) if not isinstance(vox, basestring): io.writeData( os.path.join(dct['OutputDirectory'], 'cells_heatmap_weighted.tif'), vox.astype('int32')) #Table generation: ################## #With integrated weigths from the intensity file (here raw intensity): ids, counts = countPointsInRegions(points, labeledImage=dct['AnnotationFile'], intensities=intensities, intensityRow=0) table = np.zeros(ids.shape, dtype=[('id', 'int64'), ('counts', 'f8'), ('name', 'a256')]) table["id"] = ids table["counts"] = counts table["name"] = labelToName(ids) io.writeTable( os.path.join(dct['OutputDirectory'], 'Annotated_counts_intensities.csv'), table) #Without weigths (pure cell number): ids, counts = countPointsInRegions(points, labeledImage=dct['AnnotationFile'], intensities=None) table = np.zeros(ids.shape, dtype=[('id', 'int64'), ('counts', 'f8'), ('name', 'a256')]) table["id"] = ids table["counts"] = counts table["name"] = labelToName(ids) io.writeTable(os.path.join(dct['OutputDirectory'], 'Annotated_counts.csv'), table) print('Analysis Completed') return