import ClearMap.IO.IO as io

if __name__ == "__main__":
    sample_dir = sys.argv[1].strip().rstrip("/")
    imaging_request = sys.argv[2].strip().rstrip("/")
    output_rootpath = sys.argv[3].strip().rstrip("/")

    request_name, sample_name = sample_dir.split('/')[-2:]
    project_dir = os.path.join(output_rootpath, request_name, sample_name,
                               imaging_request, "rawdata/resolution_3.6x")

    diagnostic_plot_dir = os.path.join(project_dir, "diagnostic_plots")
    savedir = os.path.join(diagnostic_plot_dir, "merged_cells")
    os.makedirs(savedir, exist_ok=True)

    ws = wsp.Workspace('CellMap', directory=project_dir)
    ws.debug = False
    im_source = ws.source('stitched')

    cells_source = ws.source('cells', postfix='raw')
    """ First plot: the histograms of coordinates, size, intensity """
    plt.figure(1)
    plt.clf()
    names = cells_source.dtype.names
    nx, ny = 2, 3
    for i, name in enumerate(names):
        plt.subplot(nx, ny, i + 1)
        plt.hist(cells_source[name])
        plt.title(name)
        if name in ['source', 'background']:
            plt.xlabel('counts')
if __name__ == '__main__':
    n_cores = os.cpu_count()

    sample_dir = sys.argv[1].strip().rstrip("/")
    blocks_per_job = int(sys.argv[2])
    output_rootpath = sys.argv[3].strip().rstrip("/")

    array_id = int(os.environ["SLURM_ARRAY_TASK_ID"])

    request_name, sample_name = sample_dir.split('/')[-2:]
    dst_dir = os.path.join(output_rootpath, request_name, sample_name,
                           'imaging_request_1/rawdata/resolution_3.6x')
    # Initialize ClearMap2 workspace object

    ws = wsp.Workspace('CellMap', directory=dst_dir)
    ws.debug = False
    print()
    ws.info()

    # Load ClearMap2 cell detection parameters
    fname = '/jukebox/witten/Chris/data/clearmap2/utilities/cell_detection_parameter.p'
    with open(fname, 'rb') as f:
        cell_detection_parameter = pickle.load(f)
    # print('path                    : ' + fname)
    cell_detection_parameter['verbose'] = True

    # Get the blocks
    blocks = bp.split_into_blocks(ws.source('stitched'),
                                  processes='serial',
                                  axes=[2],
Пример #3
0
    workspace_dir = os.path.join(output_rootpath, request_name, sample_name,
                                 imaging_request, "rawdata/resolution_3.6x")

    #  Set paths to Elastix transformation files and downsized files
    elastix_inverse_dir = os.path.join(workspace_dir,
                                       'elastix_inverse_transform')

    ch488_downsized_dir = os.path.join(workspace_dir, 'Ex_488_Em_0_downsized')
    ch642_downsized_dir = os.path.join(workspace_dir, 'Ex_642_Em_2_downsized')
    ch488_downsized_file = os.path.join(ch488_downsized_dir,
                                        'downsized_for_atlas_ch488.tif')
    ch642_downsized_file = os.path.join(ch642_downsized_dir,
                                        'downsized_for_atlas_ch642.tif')

    # Initialize ClearMap2 workspace object
    ws = wsp.Workspace('CellMap', directory=workspace_dir)
    ws.debug = False
    print()
    ws.info()

    # Load detected cells from cells_raw.npy
    raw_source = ws.source('cells', postfix='raw')
    size_intensity = np.hstack(
        [raw_source[c][:, None] for c in ['size', 'background']])
    coordinates_raw = np.hstack([raw_source[c][:, None] for c in 'xyz'])

    # Swap axes to go from horizontal to sagittal orientation
    coordinates_raw_swapped_axes = np.zeros_like(coordinates_raw)
    coordinates_raw_swapped_axes[:, 0] = coordinates_raw[:, 2]
    coordinates_raw_swapped_axes[:, 1] = coordinates_raw[:, 1]
    coordinates_raw_swapped_axes[:, 2] = coordinates_raw[:, 0]