Пример #1
0
def detectCellShape(img, peaks, detectCellShapeParameter = None, threshold = None, save = None, verbose = False, 
                    subStack = None, out = sys.stdout, **parameter):
    """Find cell shapes as labeled image
    
    Arguments:
        img (array): image data
        peaks (array): point data of cell centers / seeds
        detectCellShape (dict):
            ============ =================== ===========================================================
            Name         Type                Descritption
            ============ =================== ===========================================================
            *threshold*  (float or None)     threshold to determine mask, pixel below this are background
                                             if None no mask is generated
            *save*       (tuple)             size of the box on which to perform the *method*
            *verbose*    (bool or int)       print / plot information about this step 
            ============ =================== ===========================================================
        verbose (bool): print progress info 
        out (object): object to write progress info to
        
    Returns:
        array: labeled image where each label indicates a cell 
    """    
    
    threshold = getParameter(detectCellShapeParameter, "threshold", threshold);
    save      = getParameter(detectCellShapeParameter, "save", save);    
    verbose   = getParameter(detectCellShapeParameter, "verbose", verbose);  
    
    if verbose:
        writeParameter(out = out, head = 'Cell shape detection:', threshold = threshold, save = save);    
    
    # extended maxima
    timer = Timer();
    
    if threshold is None:
        imgmask = None;
    else:
        imgmask = img > threshold;
        
    imgpeaks = voxelizePixel(peaks, dataSize = img.shape, weights = numpy.arange(1, peaks.shape[0]+1));
    
    imgws = watershed(-img, imgpeaks, mask = imgmask);
    #imgws = watershed_ift(-img.astype('uint16'), imgpeaks);
    #imgws[numpy.logical_not(imgmask)] = 0;
    
    if not save is None:
        writeSubStack(save, imgws.astype('int32'), subStack = subStack);
    
    
    if verbose > 1:
        #plotTiling(img)
        plotOverlayLabel(img * 0.01, imgws, alpha = False);
        #plotOverlayLabel(img, imgmax.astype('int64'), alpha = True)     
    
    if verbose:
        out.write(timer.elapsedTime(head = 'Cell Shape:') + '\n');
    
    return imgws
Пример #2
0
def detectCellShape(img,
                    peaks,
                    detectCellShapeParameter=None,
                    threshold=None,
                    save=None,
                    verbose=False,
                    subStack=None,
                    out=sys.stdout,
                    **parameter):
    """Find cell shapes as labeled image
    
    Arguments:
        img (array): image data
        peaks (array): point data of cell centers / seeds
        detectCellShape (dict):
            ============ =================== ===========================================================
            Name         Type                Descritption
            ============ =================== ===========================================================
            *threshold*  (float or None)     threshold to determine mask, pixel below this are background
                                             if None no mask is generated
            *save*       (tuple)             size of the box on which to perform the *method*
            *verbose*    (bool or int)       print / plot information about this step 
            ============ =================== ===========================================================
        verbose (bool): print progress info 
        out (object): object to write progress info to
        
    Returns:
        array: labeled image where each label indicates a cell 
    """

    threshold = getParameter(detectCellShapeParameter, "threshold", threshold)
    save = getParameter(detectCellShapeParameter, "save", save)
    verbose = getParameter(detectCellShapeParameter, "verbose", verbose)

    if verbose:
        writeParameter(out=out,
                       head='Cell shape detection:',
                       threshold=threshold,
                       save=save)

    # extended maxima
    timer = Timer()

    if threshold is None:
        imgmask = None
    else:
        imgmask = img > threshold

    imgpeaks = voxelizePixel(peaks,
                             dataSize=img.shape,
                             weights=numpy.arange(1, peaks.shape[0] + 1))

    imgws = watershed(-img, imgpeaks, mask=imgmask)
    #imgws = watershed_ift(-img.astype('uint16'), imgpeaks);
    #imgws[numpy.logical_not(imgmask)] = 0;

    if not save is None:
        writeSubStack(save, imgws.astype('int32'), subStack=subStack)

    if verbose > 1:
        #plotTiling(img)
        plotOverlayLabel(img * 0.01, imgws, alpha=False)
        #plotOverlayLabel(img, imgmax.astype('int64'), alpha = True)

    if verbose:
        out.write(timer.elapsedTime(head='Cell Shape:') + '\n')

    return imgws
Пример #3
0
def findCenterOfMaxima(img, imgmax = None, label = None, findCenterOfMaximaParameter = None, save = None, verbose = False,
                       subStack = None, out = sys.stdout, **parameter):
    """Find center of detected maxima weighted by intensity
    
    Arguments:
        img (array): image data
        findCenterOfMaximaParameter (dict):
            ========= ==================== ===========================================================
            Name      Type                 Descritption
            ========= ==================== ===========================================================
            *save*    (str or None)        saves result of labeling the differnet maxima
                                           if None, do the lableling is not saved
            *verbose* (bool or int)        print / plot information about this step         
            ========= ==================== ===========================================================
        subStack (dict or None): sub-stack information 
        verbose (bool): print progress info 
        out (object): object to write progress info to
    
    Returns:
        array: coordinates of centers of maxima, shape is (n,d) where n is number of maxima and d the dimension of the image
    """
    
    save    = getParameter(findCenterOfMaximaParameter, "save", save);
    verbose = getParameter(findCenterOfMaximaParameter, "verbose", verbose);
    
    if verbose:
        writeParameter(out = out, head = 'Center of Maxima:', save = save);
    
    timer = Timer(); 

    #center of maxima
    if label is None:
        imglab, nlab = sm.label(imgmax);  
    else:
        imglab = label;
        nlab = imglab.max();
       
    #print 'max', imglab.shape, img.shape
    #print imglab.dtype, img.dtype
    
    if not save is None:
        writeSubStack(save, imglab, subStack = subStack);
    
    if nlab > 0:
        centers = numpy.array(sm.center_of_mass(img, imglab, index = numpy.arange(1, nlab)));    
    
        if verbose > 1:  
            #plotOverlayLabel(img * 0.01, imglab, alpha = False);
            #plotTiling(img)
            imgc = numpy.zeros(img.shape);
            for i in range(centers.shape[0]):
                imgc[centers[i,0], centers[i,1], centers[i,2]] = 1;
            plotOverlayLabel(img, imgc, alpha = False);
            #plotOverlayLabel(img, imgmax.astype('int64'), alpha = True)     
    
        #return centers, imglab, mask
        #cintensity = numpy.array([img[centers[i,0], centers[i,1], centers[i,2]] for i in range(centers.shape[0])]);
        
        if verbose:
            out.write(timer.elapsedTime(head = 'Cell Centers'));
        
        #return ( centers, cintensity );
        return centers;
        
    else:
        
        if verbose:
            out.write('Cell Centers: No Cells found !');
            #return ( numpy.zeros((0,3)), numpy.zeros(0) );
        
        #return empty set o coordinates
        return numpy.zeros((0,3));
Пример #4
0
def findExtendedMaxima(img, findExtendedMaximaParameter = None, hMax = None, size = 5, threshold = None, save = None, verbose = None,
                       subStack = None,  out = sys.stdout, **parameter):
    """Find extended maxima in an image 
    
    Effectively this routine performs a h-max transfrom, followed by a local maxima search and 
    thresholding of the maxima.
    
    Arguments:
        img (array): image data
        findExtendedMaximaParameter (dict):
            =========== =================== ===========================================================
            Name        Type                Descritption
            =========== =================== ===========================================================
            *hMax*      (float or None)     h parameter for the initial h-Max transform
                                            if None, do not perform a h-max transform
            *size*      (tuple)             size for the structure element for the local maxima filter
            *threshold* (float or None)     include only maxima larger than a threshold
                                            if None keep all localmaxima
            *save*      (str or None)       file name to save result of this operation
                                            if None do not save result to file
            *verbose*   (bool or int)        print / plot information about this step                                             
            =========== =================== ===========================================================
        subStack (dict or None): sub-stack information 
        verbose (bool): print progress info 
        out (object): object to write progress info to
        
    Returns:
        array: binary image with True pixel at extended maxima
        
    See Also:
        :func:`hMaxTransform`, :func:`localMax`
    """
    
    hMax      = getParameter(findExtendedMaximaParameter, "hMax", hMax);
    size      = getParameter(findExtendedMaximaParameter, "size", size);
    threshold = getParameter(findExtendedMaximaParameter, "threshold", threshold);
    save      = getParameter(findExtendedMaximaParameter, "save", save);
    verbose   = getParameter(findExtendedMaximaParameter, "verbose", verbose);

    if verbose:
        writeParameter(out = out, head = 'Extended Max:', hMax = hMax, size = size, threshold = threshold, save = save);
    
    timer = Timer();
    
    ## extended maxima    
    imgmax = hMaxTransform(img, hMax);
        
    #imgmax = regionalMax(imgmax, regionalMaxStructureElement);
    imgmax = localMax(imgmax, size);
    
    #thresholding    
    if not threshold is None:
        imgmax = numpy.logical_and(imgmax, img >= threshold);
    
    if verbose > 1:
        #plotTiling(img)
        plotOverlayLabel(img * 0.01, imgmax.astype('int64'), alpha = False);
        #plotOverlayLabel(img, imgmax.astype('int64'), alpha = True)     

    if not save is None:#
        writeSubStack(save, imgmax.astype('int8'), subStack = subStack)
        
    if verbose:
        out.write(timer.elapsedTime(head = 'Extended Max') + '\n');
    
    return imgmax
Пример #5
0
def findCenterOfMaxima(img, imgmax = None, label = None, findCenterOfMaximaParameter = None, save = None, verbose = False,
                       subStack = None, out = sys.stdout, **parameter):
    """Find center of detected maxima weighted by intensity
    
    Arguments:
        img (array): image data
        findCenterOfMaximaParameter (dict):
            ========= ==================== ===========================================================
            Name      Type                 Descritption
            ========= ==================== ===========================================================
            *save*    (str or None)        saves result of labeling the differnet maxima
                                           if None, do the lableling is not saved
            *verbose* (bool or int)        print / plot information about this step         
            ========= ==================== ===========================================================
        subStack (dict or None): sub-stack information 
        verbose (bool): print progress info 
        out (object): object to write progress info to
    
    Returns:
        array: coordinates of centers of maxima, shape is (n,d) where n is number of maxima and d the dimension of the image
    """
    
    save    = getParameter(findCenterOfMaximaParameter, "save", save);
    verbose = getParameter(findCenterOfMaximaParameter, "verbose", verbose);
    
    if verbose:
        writeParameter(out = out, head = 'Center of Maxima:', save = save);
    
    timer = Timer(); 

    #center of maxima
    if label is None:
        imglab, nlab = sm.label(imgmax);  
    else:
        imglab = label;
        nlab = imglab.max();
       
    #print 'max', imglab.shape, img.shape
    #print imglab.dtype, img.dtype
    
    if not save is None:
        writeSubStack(save, imglab, subStack = subStack);
    
    if nlab > 0:
        centers = numpy.array(sm.center_of_mass(img, imglab, index = numpy.arange(1, nlab)));    
    
        if verbose > 1:  
            #plotOverlayLabel(img * 0.01, imglab, alpha = False);
            #plotTiling(img)
            imgc = numpy.zeros(img.shape);
            for i in range(centers.shape[0]):
                imgc[centers[i,0], centers[i,1], centers[i,2]] = 1;
            plotOverlayLabel(img, imgc, alpha = False);
            #plotOverlayLabel(img, imgmax.astype('int64'), alpha = True)     
    
        #return centers, imglab, mask
        #cintensity = numpy.array([img[centers[i,0], centers[i,1], centers[i,2]] for i in range(centers.shape[0])]);
        
        if verbose:
            out.write(timer.elapsedTime(head = 'Cell Centers'));
        
        #return ( centers, cintensity );
        return centers;
        
    else:
        
        if verbose:
            out.write('Cell Centers: No Cells found !');
            #return ( numpy.zeros((0,3)), numpy.zeros(0) );
        
        #return empty set o coordinates
        return numpy.zeros((0,3));
Пример #6
0
def findExtendedMaxima(img, findExtendedMaximaParameter = None, hMax = None, size = 5, threshold = None, save = None, verbose = None,
                       subStack = None,  out = sys.stdout, **parameter):
    """Find extended maxima in an image 
    
    Effectively this routine performs a h-max transfrom, followed by a local maxima search and 
    thresholding of the maxima.
    
    Arguments:
        img (array): image data
        findExtendedMaximaParameter (dict):
            =========== =================== ===========================================================
            Name        Type                Descritption
            =========== =================== ===========================================================
            *hMax*      (float or None)     h parameter for the initial h-Max transform
                                            if None, do not perform a h-max transform
            *size*      (tuple)             size for the structure element for the local maxima filter
            *threshold* (float or None)     include only maxima larger than a threshold
                                            if None keep all localmaxima
            *save*      (str or None)       file name to save result of this operation
                                            if None do not save result to file
            *verbose*   (bool or int)        print / plot information about this step                                             
            =========== =================== ===========================================================
        subStack (dict or None): sub-stack information 
        verbose (bool): print progress info 
        out (object): object to write progress info to
        
    Returns:
        array: binary image with True pixel at extended maxima
        
    See Also:
        :func:`hMaxTransform`, :func:`localMax`
    """
    
    hMax      = getParameter(findExtendedMaximaParameter, "hMax", hMax);
    size      = getParameter(findExtendedMaximaParameter, "size", size);
    threshold = getParameter(findExtendedMaximaParameter, "threshold", threshold);
    save      = getParameter(findExtendedMaximaParameter, "save", save);
    verbose   = getParameter(findExtendedMaximaParameter, "verbose", verbose);

    if verbose:
        writeParameter(out = out, head = 'Extended Max:', hMax = hMax, size = size, threshold = threshold, save = save);
    
    timer = Timer();
    
    ## extended maxima    
    imgmax = hMaxTransform(img, hMax);
        
    #imgmax = regionalMax(imgmax, regionalMaxStructureElement);
    imgmax = localMax(imgmax, size);
    
    #thresholding    
    if not threshold is None:
        imgmax = numpy.logical_and(imgmax, img >= threshold);
    
    if verbose > 1:
        #plotTiling(img)
        plotOverlayLabel(img * 0.01, imgmax.astype('int64'), alpha = False);
        #plotOverlayLabel(img, imgmax.astype('int64'), alpha = True)     

    if not save is None:#
        writeSubStack(save, imgmax.astype('int8'), subStack = subStack)
        
    if verbose:
        out.write(timer.elapsedTime(head = 'Extended Max') + '\n');
    
    return imgmax