Пример #1
0
def FLRound(x, mode):
    """ Rounding with floating point output.
    *mode*: 0 -> floor, 1 -> ceil, -1 > trunc """
    v1, p1, z1, s1, l, k = x.v, x.p, x.z, x.s, x.vlen, x.plen
    a = types.sint()
    AdvInteger.LTZ(a, p1, k, x.kappa)
    b = p1.less_than(-l + 1, k, x.kappa)
    v2, inv_2pow_p1 = AdvInteger.Oblivious_Trunc(v1, l, -a * (1 - b) * x.p,
                                                 x.kappa, True)
    c = AdvInteger.EQZ(v2, l, x.kappa)
    if mode == -1:
        away_from_zero = 0
        mode = x.s
    else:
        away_from_zero = mode + s1 - 2 * mode * s1
    v = v1 - v2 + (1 - c) * inv_2pow_p1 * away_from_zero
    d = v.equal(AdvInteger.two_power(l), l + 1, x.kappa)
    v = d * AdvInteger.two_power(l - 1) + (1 - d) * v
    v = a * ((1 - b) * v +
             b * away_from_zero * AdvInteger.two_power(l - 1)) + (1 - a) * v1
    s = (1 - b * mode) * s1
    z = AdvInteger.or_op(AdvInteger.EQZ(v, l, x.kappa), z1)
    v = v * (1 - z)
    p = ((p1 + d * a) * (1 - b) + b * away_from_zero * (1 - l)) * (1 - z)
    return v, p, z, s
Пример #2
0
def Norm(b, k, f, kappa, simplex_flag=False):
    """
        Computes secret integer values [c] and [v_prime] st.
        2^{k-1} <= c < 2^k and c = b*v_prime
    """
    # For simplex, we can get rid of computing abs(b)
    temp = None
    if simplex_flag == False:
        temp = types.sint(b < 0)
    elif simplex_flag == True:
        temp = types.cint(0)

    sign = 1 - 2 * temp  # 1 - 2 * [b < 0]
    absolute_val = sign * b

    #next 2 lines actually compute the SufOR for little indian encoding
    bits = absolute_val.bit_decompose(k)[::-1]
    suffixes = AdvInteger.PreOR(bits)[::-1]

    z = [0] * k
    for i in range(k - 1):
        z[i] = suffixes[i] - suffixes[i + 1]
    z[k - 1] = suffixes[k - 1]

    #doing complicated stuff to compute v = 2^{k-m}
    acc = types.cint(0)
    for i in range(k):
        acc += AdvInteger.two_power(k - i - 1) * z[i]

    part_reciprocal = absolute_val * acc
    signed_acc = sign * acc

    return part_reciprocal, signed_acc
Пример #3
0
def sint_cint_division(a, b, k, f, kappa):
    """
        type(a) = sint, type(b) = cint
    """
    from types import cint, sint, Array
    from library import for_range

    theta = int(ceil(log(k / 3.5) / log(2)))
    two = cint(2) * AdvInteger.two_power(f)
    sign_b = cint(1) - 2 * cint(b < 0)
    sign_a = sint(1) - 2 * sint(a < 0)
    absolute_b = b * sign_b
    absolute_a = a * sign_a
    w0 = approximate_reciprocal(absolute_b, k, f, theta)

    A = Array(theta, sint)
    B = Array(theta, cint)
    W = Array(theta, cint)

    A[0] = absolute_a
    B[0] = absolute_b
    W[0] = w0

    @for_range(1, theta)
    def block(i):
        A[i] = AdvInteger.TruncPr(A[i - 1] * W[i - 1], 2 * k, f, kappa)
        temp = (B[i - 1] * W[i - 1]) >> f
        # no reading and writing to the same variable in a for loop.
        W[i] = two - temp
        B[i] = temp

    return (sign_a * sign_b) * A[theta - 1]
Пример #4
0
def cint_cint_division(a, b, k, f):
    """
        Goldschmidt method implemented with
        SE aproximation:
        http://stackoverflow.com/questions/2661541/picking-good-first-estimates-for-goldschmidt-division
    """
    from types import cint, Array
    from library import for_range
    # theta can be replaced with something smaller
    # for safety we assume that is the same theta from previous GS method

    theta = int(ceil(log(k / 3.5) / log(2)))
    two = cint(2) * AdvInteger.two_power(f)

    sign_b = cint(1) - 2 * cint(b < 0)
    sign_a = cint(1) - 2 * cint(a < 0)
    absolute_b = b * sign_b
    absolute_a = a * sign_a
    w0 = approximate_reciprocal(absolute_b, k, f, theta)

    A = Array(theta, cint)
    B = Array(theta, cint)
    W = Array(theta, cint)

    A[0] = absolute_a
    B[0] = absolute_b
    W[0] = w0

    @for_range(1, theta)
    def block(i):
        A[i] = (A[i - 1] * W[i - 1]) >> f
        B[i] = (B[i - 1] * W[i - 1]) >> f
        W[i] = two - B[i]

    return (sign_a * sign_b) * A[theta - 1]
Пример #5
0
def approximate_reciprocal(divisor, k, f, theta):
    """
        returns aproximation of 1/divisor
        where type(divisor) = cint
    """
    from types import cint, Array, MemValue, regint
    from library import for_range, if_

    def twos_complement(x):
        bits = x.bit_decompose(k)[::-1]
        bit_array = Array(k, cint)
        bit_array.assign(bits)

        twos_result = MemValue(cint(0))

        @for_range(k)
        def block(i):
            val = twos_result.read()
            val <<= 1
            val += 1 - bit_array[i]
            twos_result.write(val)

        return twos_result.read() + 1

    bit_array = Array(k, cint)
    bits = divisor.bit_decompose(k)[::-1]
    bit_array.assign(bits)

    cnt_leading_zeros = MemValue(regint(0))

    flag = MemValue(regint(0))
    cnt_leading_zeros = MemValue(regint(0))
    normalized_divisor = MemValue(divisor)

    @for_range(k)
    def block(i):
        flag.write(flag.read() | bit_array[i] == 1)

        @if_(flag.read() == 0)
        def block():
            cnt_leading_zeros.write(cnt_leading_zeros.read() + 1)
            normalized_divisor.write(normalized_divisor << 1)

    q = MemValue(AdvInteger.two_power(k))
    e = MemValue(twos_complement(normalized_divisor.read()))

    @for_range(theta)
    def block(i):
        qread = q.read()
        eread = e.read()
        qread += (qread * eread) >> k
        eread = (eread * eread) >> k

        q.write(qread)
        e.write(eread)

    res = q >> cint(2 * k - 2 * f - cnt_leading_zeros)

    return res
Пример #6
0
def SDiv(a, b, l, kappa):
    theta = int(ceil(log(l / 3.5) / log(2)))
    alpha = AdvInteger.two_power(2 * l)
    beta = 1 / types.cint(AdvInteger.two_power(l))
    w = types.cint(int(2.9142 * AdvInteger.two_power(l))) - 2 * b
    x = alpha - b * w
    y = a * w
    y = AdvInteger.TruncPr(y, 2 * l, l, kappa)
    x2 = types.sint()
    AdvInteger.Mod2m(x2, x, 2 * l + 1, l, kappa, False)
    x1 = (x - x2) * beta
    for i in range(theta - 1):
        y = y * (x1 + two_power(l)) + AdvInteger.TruncPr(
            y * x2, 2 * l, l, kappa)
        y = AdvInteger.TruncPr(y, 2 * l + 1, l + 1, kappa)
        x = x1 * x2 + AdvInteger.TruncPr(x2**2, 2 * l + 1, l + 1, kappa)
        x = x1 * x1 + AdvInteger.TruncPr(x, 2 * l + 1, l - 1, kappa)
        x2 = types.sint()
        AdvInteger.Mod2m(x2, x, 2 * l, l, kappa, False)
        x1 = (x - x2) * beta
    y = y * (x1 + two_power(l)) + AdvInteger.TruncPr(y * x2, 2 * l, l, kappa)
    y = AdvInteger.TruncPr(y, 2 * l + 1, l - 1, kappa)
    return y
Пример #7
0
def Div(a, b, k, f, kappa, simplex_flag=False):
    theta = int(ceil(log(k / 3.5) / log(2)))
    alpha = AdvInteger.two_power(2 * f)
    w = AppRcr(b, k, f, kappa, simplex_flag)
    x = alpha - b * w

    y = a * w
    y = AdvInteger.TruncPr(y, 2 * k, f, kappa)

    for i in range(theta):
        y = y * (alpha + x)
        x = x * x
        y = AdvInteger.TruncPr(y, 2 * k, 2 * f, kappa)
        x = AdvInteger.TruncPr(x, 2 * k, 2 * f, kappa)

    y = y * (alpha + x)
    y = AdvInteger.TruncPr(y, 2 * k, 2 * f, kappa)
    return y
Пример #8
0
def TruncRoundNearestAdjustOverflow(a, length, target_length, kappa):
    t = AdvInteger.TruncRoundNearest(a, length, length - target_length, kappa)
    overflow = t.greater_equal(AdvInteger.two_power(target_length),
                               target_length + 1, kappa)
    s = (1 - overflow) * t + overflow * t / 2
    return s, overflow