def run_mix_racos():

    # parameters
    sample_size = 8            # the instance number of sampling in an iteration
    budget = 20000                # budget in online style
    positive_num = 2            # the set size of PosPop
    rand_probability = 0.99     # the probability of sample in model
    uncertain_bit = 2           # the dimension size that is sampled randomly

    repeat = 4
    list_budget = [100, 1000, 10000, 50000]

    # dimension setting
    dimension_size = 15
    float_region = [-100, 100]
    integer_region = [-100, 100]
    categorical_region = [0, 2]

    dimension = Dimension()
    dimension.set_dimension_size(dimension_size)
    for i in range(dimension_size):
        if i % 3 == 0:
            dimension.set_region(i, float_region, 0)
        elif i % 3 == 1:
            dimension.set_region(i, integer_region, 1)
        else:
            dimension.set_region(i, categorical_region, 2)


    # optimization
    racos = RacosOptimization(dimension)

    for i in range(repeat):

        start_t = time.time()
        racos.mix_opt(tt_func, ss=sample_size, bud=list_budget[i], pn=positive_num, rp=rand_probability, ub=uncertain_bit)
        end_t = time.time()

        optimal = racos.get_optimal()

        hour, minute, second = time_formulate(start_t, end_t)

        print('total budget is ', list_budget[i], '------------------------------')
        print('spending time: ', hour, ' hours ', minute, ' minutes ', second, ' seconds')
        print('optimal value: ', optimal.get_fitness())
Пример #2
0
def get_dimension(param_input):
    '''
    get dimension params by param input
    :param param_input: params input
    :return: dimension and the label coder
    '''
    dimension = Dimension()
    label_coder = ParamsHelper()
    dimension.set_dimension_size(len(param_input))
    index = 0
    for k, (type, obj) in param_input.items():
        dimension.set_region(
            *label_coder.encode(type=type, index=index, key=k, objs=obj))
        index = index + 1
    return dimension, label_coder
def run_exp_racos_for_synthetic_problem_analysis():

    # parameters
    sample_size = 10  # the instance number of sampling in an iteration
    budget = 500  # budget in online style
    positive_num = 2  # the set size of PosPop
    rand_probability = 0.99  # the probability of sample in model
    uncertain_bit = 1  # the dimension size that is sampled randomly
    adv_threshold = 10  # advance sample size

    opt_repeat = 10

    dimension_size = 10
    problem_name = 'sphere'
    problem_num = 200
    start_index = 0
    bias_region = 0.2

    dimension = Dimension()
    dimension.set_dimension_size(dimension_size)
    dimension.set_regions([[-1.0, 1.0] for _ in range(dimension_size)],
                          [0 for _ in range(dimension_size)])

    log_buffer = []

    # logging
    learner_path = './ExpLearner/SyntheticProbsLearner/' + problem_name + '/dimension' + str(dimension_size)\
                   + '/DirectionalModel/' + 'learner-' + problem_name + '-' + 'dim' + str(dimension_size) + '-'\
                   + 'bias' + str(bias_region) + '-'
    problem_path = './ExpLog/SyntheticProbsLog/' + problem_name + '/dimension' + str(dimension_size)\
                   + '/DirectionalModel/' + 'bias-' + problem_name + '-' + 'dim' + str(dimension_size) + '-'\
                   + 'bias' + str(bias_region) + '-'

    func = DistributedFunction(dimension, bias_region=[-0.5, 0.5])
    target_bias = [0.1 for _ in range(dimension_size)]
    func.setBias(target_bias)

    if problem_name == 'ackley':
        prob_fct = func.DisAckley
    else:
        prob_fct = func.DisSphere

    relate_error_list = []

    for prob_i in range(problem_num):

        print(
            start_index + prob_i,
            '++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++')
        log_buffer.append(
            str(start_index + prob_i) +
            '++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++')

        log_buffer.append('+++++++++++++++++++++++++++++++')
        log_buffer.append('optimization parameters')
        log_buffer.append('sample size: ' + str(sample_size))
        log_buffer.append('budget: ' + str(budget))
        log_buffer.append('positive num: ' + str(positive_num))
        log_buffer.append('random probability: ' + str(rand_probability))
        log_buffer.append('uncertain bits: ' + str(uncertain_bit))
        log_buffer.append('advance num: ' + str(adv_threshold))
        log_buffer.append('+++++++++++++++++++++++++++++++')
        log_buffer.append('problem parameters')
        log_buffer.append('dimension size: ' + str(dimension_size))
        log_buffer.append('problem name: ' + problem_name)
        log_buffer.append('bias_region: ' + str(bias_region))
        log_buffer.append('+++++++++++++++++++++++++++++++')

        problem_file = problem_path + str(start_index + prob_i) + '.txt'
        problem_str = fo.FileReader(problem_file)[0].split(',')
        problem_index = int(problem_str[0])
        problem_bias = string2list(problem_str[1])
        if problem_index != (start_index + prob_i):
            print('problem error!')
            exit(0)
        print('source bias: ', problem_bias)
        log_buffer.append('source bias: ' + list2string(problem_bias))

        reduisal = np.array(target_bias) - np.array(problem_bias)
        this_distance = reduisal * reduisal.T

        learner_file = learner_path + str(start_index + prob_i) + '.pkl'
        log_buffer.append('learner file: ' + learner_file)
        print('learner file: ', learner_file)

        net = torch.load(learner_file)

        net_list = [net]

        opt_error_list = []

        for i in range(opt_repeat):

            print('optimize ', i,
                  '===================================================')
            log_buffer.append(
                'optimize ' + str(i) +
                '===================================================')

            exp_racos = ExpRacosOptimization(dimension, net_list)

            start_t = time.time()
            exp_racos.exp_mix_opt(obj_fct=prob_fct,
                                  ss=sample_size,
                                  bud=budget,
                                  pn=positive_num,
                                  rp=rand_probability,
                                  ub=uncertain_bit,
                                  at=adv_threshold)
            end_t = time.time()

            print('total budget is ', budget)
            log_buffer.append('total budget is ' + str(budget))

            hour, minute, second = time_formulate(start_t, end_t)
            print('spending time: ', hour, ':', minute, ':', second)
            log_buffer.append('spending time: ' + str(hour) + '+' +
                              str(minute) + '+' + str(second))

            optimal = exp_racos.get_optimal()
            opt_error = optimal.get_fitness()
            optimal_x = optimal.get_features()

            opt_error_list.append(opt_error)
            print('validation optimal value: ', opt_error)
            log_buffer.append('validation optimal value: ' + str(opt_error))
            print('optimal x: ', optimal_x)
            log_buffer.append('optimal nn structure: ' +
                              list2string(optimal_x))

        opt_mean = np.mean(np.array(opt_error_list))
        relate_error_list.append([this_distance, opt_mean])
        opt_std = np.std(np.array(opt_error_list))
        print('--------------------------------------------------')
        print('optimization result: ', opt_mean, '#', opt_std)
        log_buffer.append('--------------------------------------------------')
        log_buffer.append('optimization result: ' + str(opt_mean) + '#' +
                          str(opt_std))

    result_path = './Results/SyntheticProbs/' + problem_name + '/dimension' + str(
        dimension_size) + '/'
    relate_error_file = result_path + 'relate-error-' + problem_name + '-dim' + str(dimension_size) + '-bias'\
                            + str(bias_region) + '.txt'
    temp_buffer = []
    for i in range(len(relate_error_list)):
        relate, error = relate_error_list[i]
        temp_buffer.append(str(relate) + ',' + str(error))
    print('relate error logging: ', relate_error_file)
    log_buffer.append('relate error logging: ' + relate_error_file)
    fo.FileWriter(relate_error_file, temp_buffer, style='w')

    optimization_log_file = result_path + 'opt-log-' + problem_name + '-dim' + str(dimension_size) + '-bias'\
                            + str(bias_region) + '.txt'
    print('optimization logging: ', optimization_log_file)
    fo.FileWriter(optimization_log_file, log_buffer, style='w')
Пример #4
0
MaxIteration = 30         # the number of iterations
Budget = 150               # budget in online style
PositiveNum = 2            # the set size of PosPop
RandProbability = 0.95     # the probability of sample in model
UncertainBits = 3          # the dimension size that is sampled randomly

# continuous optimization
if False:

    #dimension setting
    DimSize = 10
    regs = []
    regs.append(-1)
    regs.append(1)

    dim = Dimension()
    dim.setDimensionSize(DimSize)
    for i in range(DimSize):
        dim.setRegion(i, regs, True)

    racos = RacosOptimizaiton(dim)

    # call online version RACOS
    #racos.OnlineTurnOn()
    #racos.ContinueOpt(Sphere, SampleSize, Budget, PositiveNum, RandProbability, UncertainBits)

    racos.ContinueOpt(Sphere, SampleSize, MaxIteration, PositiveNum, RandProbability, UncertainBits)

    print racos.getOptimal().getFeatures()
    print racos.getOptimal().getFitness()
def synthetic_problems_sample(budget=500,
                              problem_name='sphere',
                              problem_size=5,
                              max_bias=0.5,
                              bias_step=0):
    sample_size = 10  # the instance number of sampling in an iteration
    positive_num = 2  # the set size of PosPop
    rand_probability = 0.99  # the probability of sample in model
    uncertain_bits = 2  # the dimension size that is sampled randomly

    start_index = 0

    repeat_num = 10

    exp_path = path + '/ExpLog/SyntheticProbsLog/'

    bias = 0

    dimension_size = 10

    dimension = Dimension()
    dimension.set_dimension_size(dimension_size)
    dimension.set_regions([[-1.0, 1.0] for _ in range(dimension_size)],
                          [0 for _ in range(dimension_size)])

    if bias_step > 0:
        problem_name += '_group-sample'

    for prob_i in range(problem_size):

        if bias_step > 0 and prob_i % (problem_size / max_bias *
                                       bias_step) == 0:
            bias += bias_step
        else:
            bias = max_bias

        # bias log format: 'index,bias_list: dim1 dim2 dim3...'
        bias_log = []
        running_log = []
        running_log.append('+++++++++++++++++++++++++++++++++')
        running_log.append('optimization setting: ')
        running_log.append('sample_size: ' + str(sample_size))
        running_log.append('positive_num: ' + str(positive_num))
        running_log.append('rand_probability: ' + str(rand_probability))
        running_log.append('uncertain_bits: ' + str(uncertain_bits))
        running_log.append('budget: ' + str(budget))
        running_log.append('group sample step: ' + str(bias_step))
        running_log.append('+++++++++++++++++++++++++++++++++')

        print(problem_name, ': ', start_index + prob_i,
              ' ==============================================')
        running_log.append(problem_name + ': ' + str(start_index + prob_i) +
                           ' ==============================================')

        # problem setting
        func = DistributedFunction(dim=dimension, bias_region=[-bias, bias])
        if 'ackley' in problem_name:
            prob = func.DisAckley
        elif 'sphere' in problem_name:
            prob = func.DisSphere
        elif 'rosenbrock' in problem_name:
            prob = func.DisRosenbrock
        else:
            print('Wrong function!')
            return

            # bias log
        bias_log.append(str(prob_i) + ',' + list2string(func.getBias()))
        print('function: ', problem_name, ', this bias: ', func.getBias())
        running_log.append('function: ' + problem_name + ', this bias: ' +
                           list2string(func.getBias()))

        # optimization setting
        optimizer = RacosOptimization(dimension)

        positive_set = []
        negative_set = []
        new_sample_set = []
        label_set = []

        for repeat_i in range(repeat_num):
            print('repeat ', repeat_i,
                  ' ----------------------------------------')
            running_log.append('repeat ' + str(repeat_i) +
                               ' ----------------------------------------')

            # optimization process
            start_t = time.time()
            optimizer.mix_opt(obj_fct=prob,
                              ss=sample_size,
                              bud=budget,
                              pn=positive_num,
                              rp=rand_probability,
                              ub=uncertain_bits)
            end_t = time.time()
            hour, minute, second = time_formulate(start_t, end_t)

            # optimization results
            optimal = optimizer.get_optimal()
            print('optimal v: ', optimal.get_fitness(), ' - ',
                  optimal.get_features())
            running_log.append('optimal v: ' + str(optimal.get_fitness()) +
                               ' - ' + list2string(optimal.get_features()))
            print('spent time: ', hour, ':', minute, ':', second)
            running_log.append('spent time: ' + str(hour) + ':' + str(minute) +
                               ':' + str(second))

            # log samples
            this_positive, this_negative, this_new, this_label = optimizer.get_log(
            )

            print('sample number: ', len(this_positive), ':', len(this_label))
            running_log.append('sample number: ' + str(len(this_positive)) +
                               ':' + str(len(this_label)))

            positive_set.extend(this_positive)
            negative_set.extend(this_negative)
            new_sample_set.extend(this_new)
            label_set.extend(this_label)
        print('----------------------------------------------')
        print('sample finish!')
        print('all sample number: ', len(positive_set), '-', len(negative_set), '-', len(new_sample_set), \
              '-', len(label_set))
        running_log.append('----------------------------------------------')
        running_log.append('all sample number: ' + str(len(positive_set)) +
                           '-' + str(len(negative_set)) + '-' +
                           str(len(new_sample_set)) + '-' +
                           str(len(label_set)))

        data_log_file = exp_path + str(problem_name) + '/dimension' + str(dimension_size) + '/DataLog/' + \
                        'data-' + problem_name + '-' + 'dim' + str(dimension_size) + '-' + 'bias' \
                        + str(bias) + '-' + str(start_index + prob_i) + '.pkl'
        bias_log_file = exp_path + str(problem_name) + '/dimension' + str(dimension_size) + '/RecordLog/' + 'bias-' \
                        + problem_name + '-' + 'dim' + str(dimension_size) + '-' + 'bias' + str(bias) \
                        + '-' + str(start_index + prob_i) + '.txt'
        running_log_file = exp_path + str(problem_name) + '/dimension' + str(dimension_size) + '/RecordLog/' + \
                           'running-' + problem_name + '-' + 'dim' + str(dimension_size) + '-' + 'bias' \
                           + str(bias) + '-' + str(start_index + prob_i) + '.txt'

        print('data logging: ', data_log_file)
        running_log.append('data log path: ' + data_log_file)
        save_log(positive_set, negative_set, new_sample_set, label_set,
                 data_log_file)

        print('bias logging: ', bias_log_file)
        running_log.append('bias log path: ' + bias_log_file)
        fo.FileWriter(bias_log_file, bias_log, style='w')

        print('running logging: ', running_log_file)
        fo.FileWriter(running_log_file, running_log, style='w')

    return
from __future__ import division, print_function
from smac.facade.func_facade import fmin_smac
from ObjectiveFunction import DistributedFunction
from Components import Dimension
from Tools import RandomOperator
import numpy as np

dimension_size = 10

dimension = Dimension()
dimension.set_dimension_size(dimension_size)
dimension.set_regions([[-0.5, 0.5] for _ in range(dimension_size)],
                      [0 for _ in range(dimension_size)])

func = DistributedFunction(dimension, bias_region=[-0.5, 0.5])
target_bias = [0.25 for _ in range(dimension_size)]
func.setBias(target_bias)

ro = RandomOperator()
prob_fct = func.DisRosenbrock
x0 = [ro.get_uniform_double(-0.5, 0.5) for _ in range(dimension_size)]
ans = []
for i in range(10):
    x, cost, _ = fmin_smac(func=prob_fct,
                           x0=x0,
                           bounds=[[-0.5, 0.5] for _ in range(dimension_size)],
                           maxfun=50,
                           rng=3)
    ans.append(x)
# print("Optimum at {} with cost of {}".format(x, cost))
print(np.mean(ans))
def run(type):
    dimension = Dimension()
    dimension.set_dimension_size(dimension_size)
    dimension.set_regions([[-1.0, 1.0] for _ in range(dimension_size)],
                          [0 for _ in range(dimension_size)])

    # problem define
    func = DistributedFunction(dimension,
                               bias_region=[-bias_region, bias_region])
    target_bias = [0.1 for _ in range(dimension_size)]
    func.setBias(target_bias)

    if problem_name == 'ackley':
        prob_fct = func.DisAckley
    elif problem_name == 'sphere':
        prob_fct = func.DisSphere
    elif problem_name == 'rosenbrock':
        prob_fct = func.DisRosenbrock
    else:
        print('Wrong function!')
        exit()
    opt_error_list = []
    log_buffer.append('+++++++++++++++++++++++++++++++')
    log_buffer.append('Running: ' + type)
    log_buffer.append('+++++++++++++++++++++++++++++++')
    print('+++++++++++++++++++++++++++++++')
    print('Running: ' + type)
    print('+++++++++++++++++++++++++++++++')
    if type == 'ada':
        # pre=sorted(predictors,key=lambda a:a.dist)
        expert = Experts(predictors=predictors, eta=eta, bg=budget)

    for i in range(opt_repeat):
        print('optimize ', i,
              '===================================================')
        log_buffer.append(
            'optimize ' + str(i) +
            '===================================================')
        start_t = time.time()
        if type == 'exp':
            exp_racos = ExpRacosOptimization(dimension, nets)
            opt_error = exp_racos.exp_mix_opt(obj_fct=prob_fct,
                                              ss=sample_size,
                                              bud=budget,
                                              pn=positive_num,
                                              rp=rand_probability,
                                              ub=uncertain_bit,
                                              at=adv_threshold)
        elif type == 'ada':
            exp_racos = ExpAdaRacosOptimization(dimension, expert)
            opt_error = exp_racos.exp_ada_mix_opt(obj_fct=prob_fct,
                                                  ss=sample_size,
                                                  bud=budget,
                                                  pn=positive_num,
                                                  rp=rand_probability,
                                                  ub=uncertain_bit,
                                                  at=adv_threshold)
        else:
            print('Wrong type!')
            return

        end_t = time.time()

        hour, minute, second = time_formulate(start_t, end_t)
        print('spending time: ', hour, ':', minute, ':', second)
        log_buffer.append('spending time: ' + str(hour) + '+' + str(minute) +
                          '+' + str(second))

        opt_error_list.append(opt_error)
        print('validation optimal value: ', opt_error)
        log_buffer.append('validation optimal value: ' + str(opt_error))

    opt_mean = np.mean(np.array(opt_error_list), axis=0)
    opt_std = np.std(np.array(opt_error_list), axis=0)
    print('--------------------------------------------------')
    print('optimization result for ' + str(opt_repeat) + ' times average: ',
          opt_mean, ', standard variance is: ', opt_std)
    log_buffer.append('--------------------------------------------------')
    log_buffer.append('optimization result for ' + str(opt_repeat) +
                      ' times average: ' + str(opt_mean) +
                      ', standard variance is: ' + str(opt_std))

    return opt_mean
def run_racos():
    # parameters
    sample_size = 10  # the instance number of sampling in an iteration
    budget = 500  # budget in online style
    positive_num = 2  # the set size of PosPop
    rand_probability = 0.99  # the probability of sample in model
    uncertain_bit = 1  # the dimension size that is sampled randomly
    bias_region = 0.5

    repeat = 10

    # dimension setting
    dimension_size = 10

    dimension = Dimension()
    dimension.set_dimension_size(dimension_size)
    dimension.set_regions([[-1.0, 1.0] for _ in range(dimension_size)],
                          [0 for _ in range(dimension_size)])

    func = DistributedFunction(dim=dimension,
                               bias_region=[-bias_region, bias_region])
    if problem_name == 'rosenbrock':
        prob = func.DisRosenbrock
    else:
        prob = func.DisSphere

    # optimization
    racos = RacosOptimization(dimension)
    opt_error_list = []

    for i in range(repeat):
        start_t = time.time()
        racos.mix_opt(prob,
                      ss=sample_size,
                      bud=budget,
                      pn=positive_num,
                      rp=rand_probability,
                      ub=uncertain_bit)
        end_t = time.time()

        optimal = racos.get_optimal()

        hour, minute, second = time_formulate(start_t, end_t)

        print('total budget is ', budget, '------------------------------')
        print('spending time: ', hour, ' hours ', minute, ' minutes ', second,
              ' seconds')
        print('optimal value: ', optimal.get_fitness())
        opt_error = optimal.get_fitness()
        optimal_x = optimal.get_features()

        opt_error_list.append(opt_error)
        print('validation optimal value: ', opt_error)
        log_buffer.append('validation optimal value: ' + str(opt_error))
        print('optimal x: ', optimal_x)
        log_buffer.append('optimal nn structure: ' + list2string(optimal_x))
    opt_mean = np.mean(np.array(opt_error_list))
    opt_std = np.std(np.array(opt_error_list))
    print('--------------------------------------------------')
    print('optimization result: ', opt_mean, '#', opt_std)
    log_buffer.append('--------------------------------------------------')
    log_buffer.append('optimization result: ' + str(opt_mean) + '#' +
                      str(opt_std))

    return opt_mean
def run_for_synthetic_problem():

    sample_size = 10  # the instance number of sampling in an iteration
    budget = 50  # budget in online style
    positive_num = 2  # the set size of PosPop
    rand_probability = 0.99  # the probability of sample in model
    uncertain_bit = 1  # the dimension size that is sampled randomly
    adv_threshold = 10  # advance sample size

    opt_repeat = 10

    dimension_size = 10
    problem_name = 'sphere'
    bias_region = 0.5

    eta = 0.9
    step = 100

    dimension = Dimension()
    dimension.set_dimension_size(dimension_size)
    dimension.set_regions([[-1.0, 1.0] for _ in range(dimension_size)],
                          [0 for _ in range(dimension_size)])

    log_buffer = []

    # problem define
    func = DistributedFunction(dimension, bias_region=[-0.5, 0.5])
    target_bias = [0.2 for _ in range(dimension_size)]
    func.setBias(target_bias)

    if problem_name == 'ackley':
        prob_fct = func.DisAckley
    else:
        prob_fct = func.DisSphere

    log_buffer.append('+++++++++++++++++++++++++++++++')
    log_buffer.append('optimization parameters')
    log_buffer.append('sample size: ' + str(sample_size))
    log_buffer.append('budget: ' + str(budget))
    log_buffer.append('positive num: ' + str(positive_num))
    log_buffer.append('random probability: ' + str(rand_probability))
    log_buffer.append('uncertain bits: ' + str(uncertain_bit))
    log_buffer.append('advance num: ' + str(adv_threshold))
    log_buffer.append('+++++++++++++++++++++++++++++++')
    log_buffer.append('problem parameters')
    log_buffer.append('dimension size: ' + str(dimension_size))
    log_buffer.append('problem name: ' + problem_name)
    log_buffer.append('bias: ' + list2string(target_bias))
    log_buffer.append('+++++++++++++++++++++++++++++++')

    predictors, load_buffer = get_predicotrs()
    expert = Experts(predictors=predictors, eta=eta, step=step)
    log_buffer.extend(load_buffer)

    opt_error_list = []

    for i in range(opt_repeat):
        print('optimize ', i,
              '===================================================')
        log_buffer.append(
            'optimize ' + str(i) +
            '===================================================')

        exp_racos = ExpAdaRacosOptimization(dimension, expert)

        start_t = time.time()
        exp_racos.exp_ada_mix_opt(obj_fct=prob_fct,
                                  ss=sample_size,
                                  bud=budget,
                                  pn=positive_num,
                                  rp=rand_probability,
                                  ub=uncertain_bit,
                                  at=adv_threshold)
        end_t = time.time()

        print('total budget is ', budget)
        log_buffer.append('total budget is ' + str(budget))

        hour, minute, second = time_formulate(start_t, end_t)
        print('spending time: ', hour, ':', minute, ':', second)
        log_buffer.append('spending time: ' + str(hour) + '+' + str(minute) +
                          '+' + str(second))

        optimal = exp_racos.get_optimal()
        opt_error = optimal.get_fitness()
        optimal_x = optimal.get_features()

        opt_error_list.append(opt_error)
        print('validation optimal value: ', opt_error)
        log_buffer.append('validation optimal value: ' + str(opt_error))
        print('optimal x: ', optimal_x)
        log_buffer.append('optimal nn structure: ' + list2string(optimal_x))

    opt_mean = np.mean(np.array(opt_error_list))
    opt_std = np.std(np.array(opt_error_list))
    print('--------------------------------------------------')
    print('optimization result: ', opt_mean, '#', opt_std)
    log_buffer.append('--------------------------------------------------')
    log_buffer.append('optimization result: ' + str(opt_mean) + '#' +
                      str(opt_std))

    result_path = path + '/Results/Ada/' + problem_name + '/dimension' + str(
        dimension_size) + '/'

    optimization_log_file = result_path + 'opt-log-' + problem_name + '-dim' + str(dimension_size) + '-bias' \
                            + str(bias_region) + '.txt'
    print('optimization logging: ', optimization_log_file)
    fo.FileWriter(optimization_log_file, log_buffer, style='w')

    return
Пример #10
0
    print mean_r, '#', std_r
    return


# continuous optimization
if True:

    # dimension setting
    repeat = 15
    results = []
    DimSize = 100
    regs = []
    regs.append(0.0)
    regs.append(1.0)

    dim = Dimension()
    dim.setDimensionSize(DimSize)
    for i in range(DimSize):
        dim.setRegion(i, regs, True)

    for i in range(repeat):
        print i, ':--------------------------------------------------------------'
        racos = RacosOptimization(dim)

        # call online version RACOS
        # racos.OnlineTurnOn()
        # racos.ContinueOpt(Ackley, SampleSize, Budget, PositiveNum, RandProbability, UncertainBits)

        racos.ContinueOpt(Ackley, SampleSize, MaxIteration, PositiveNum,
                          RandProbability, UncertainBits)
rand_probability = 0.99  # the probability of sample in model
uncertain_bits = 2  # the dimension size that is sampled randomly

start_index = 0
problem_name = 'sphere'
problem_num = 2000 - start_index

repeat_num = 10

exp_path = path + '/ExpLog/SyntheticProbsLog/'

bias_region = 0.5

dimension_size = 10

dimension = Dimension()
dimension.set_dimension_size(dimension_size)
dimension.set_regions([[-1.0, 1.0] for _ in range(dimension_size)],
                      [0 for _ in range(dimension_size)])


def run_exp_racos_for_synthetic_problem_analysis():

    # parameters
    positive_num = 2  # the set size of PosPop
    rand_probability = 0.99  # the probability of sample in model
    uncertain_bit = 1  # the dimension size that is sampled randomly
    adv_threshold = 10  # advance sample size

    opt_repeat = 10
    log_buffer = []