def test_convert_restrictions(self): # This is a smoke test to make sure that the int/float values in the # greater or smaller statements are converted to the right type when # reading them s = """x1 real [0,1] [0] x2 real [0,1] [0] x3 real [0,1] [0] x4 integer [0,2] [0] x5 real [0,1] [0] x6 ordinal {cold, luke-warm, hot} [cold] x1 | x2 > 0.5 x3 | x4 > 1 && x4 == 2 && x4 in {2} x5 | x6 > luke-warm""" pcs_new.read(s.split('\n'))
def run_test(self): try: with open(configuration_space_path) as fh: cs = pcs_parser.read(fh) except: with open(configuration_space_path) as fh: cs = pcs_new_parser.read(fh) default = cs.get_default_configuration() cs._check_configuration_rigorous(default) for i in range(10): neighborhood = ConfigSpace.util.get_one_exchange_neighbourhood( default, seed=i) for shuffle, n in enumerate(neighborhood): n.is_valid_configuration() cs._check_configuration_rigorous(n) if shuffle == 10: break # Sample a little bit for i in range(10): cs.seed(i) configurations = cs.sample_configuration(size=5) for j, c in enumerate(configurations): c.is_valid_configuration() cs._check_configuration_rigorous(c) neighborhood = ConfigSpace.util.get_one_exchange_neighbourhood( c, seed=i) for shuffle, n in enumerate(neighborhood): n.is_valid_configuration() cs._check_configuration_rigorous(n) if shuffle == 20: break
def run_test(self): if 'ordinal' in configuration_space_path: return try: with open(configuration_space_path) as fh: cs = pcs_parser.read(fh) except: with open(configuration_space_path) as fh: cs = pcs_new_parser.read(fh) # Sample a little bit for i in range(10): print(i) cs.seed(i) configurations = cs.sample_configuration(size=5) for j, c in enumerate(configurations): print(j) c.is_valid_configuration() neighborhood = ConfigSpace.util.get_one_exchange_neighbourhood( c, seed=i) for shuffle, n in enumerate(neighborhood): n.is_valid_configuration() if shuffle == 10: break
def test_read_new_configuration_space_complex_conditionals(self): classi = OrdinalHyperparameter("classi", ["random_forest","extra_trees","k_nearest_neighbors","something"]) knn_weights = CategoricalHyperparameter("knn_weights", ["uniform", "distance"]) weather = OrdinalHyperparameter("weather",["sunny", "rainy", "cloudy", "snowing"]) temperature = CategoricalHyperparameter("temperature", ["high", "low"]) rain = CategoricalHyperparameter("rain", ["yes", "no"]) gloves = OrdinalHyperparameter("gloves",["none", "yarn", "leather", "gortex"]) heur1 = CategoricalHyperparameter("heur1", ["off", "on"]) heur2 = CategoricalHyperparameter("heur2", ["off", "on"]) heur_order = CategoricalHyperparameter("heur_order", ["heur1then2", "heur2then1"]) gloves_condition = OrConjunction(EqualsCondition(gloves, rain, "yes"), EqualsCondition(gloves, temperature, "low")) heur_condition = AndConjunction(EqualsCondition(heur_order, heur1, "on"), EqualsCondition(heur_order, heur2, "on")) and_conjunction = AndConjunction(NotEqualsCondition(knn_weights, classi, "extra_trees"), EqualsCondition(knn_weights, classi, "random_forest")) Cl_condition = OrConjunction(EqualsCondition(knn_weights, classi, "k_nearest_neighbors"), and_conjunction, EqualsCondition(knn_weights, classi, "something")) and1 = AndConjunction(EqualsCondition(temperature, weather, "rainy"), EqualsCondition(temperature, weather, "cloudy")) and2 = AndConjunction(EqualsCondition(temperature, weather, "sunny"), NotEqualsCondition(temperature, weather, "snowing")) another_condition = OrConjunction(and1,and2) complex_conditional_space = ConfigurationSpace() complex_conditional_space.add_hyperparameter(classi) complex_conditional_space.add_hyperparameter(knn_weights) complex_conditional_space.add_hyperparameter(weather) complex_conditional_space.add_hyperparameter(temperature) complex_conditional_space.add_hyperparameter(rain) complex_conditional_space.add_hyperparameter(gloves) complex_conditional_space.add_hyperparameter(heur1) complex_conditional_space.add_hyperparameter(heur2) complex_conditional_space.add_hyperparameter(heur_order) complex_conditional_space.add_condition(gloves_condition) complex_conditional_space.add_condition(heur_condition) complex_conditional_space.add_condition(Cl_condition) complex_conditional_space.add_condition(another_condition) complex_cs = list() complex_cs.append("classi ordinal {random_forest,extra_trees,k_nearest_neighbors, something} [random_forest]") complex_cs.append("knn_weights categorical {uniform, distance} [uniform]") complex_cs.append("weather ordinal {sunny, rainy, cloudy, snowing} [sunny]") complex_cs.append("temperature categorical {high, low} [high]") complex_cs.append("rain categorical { yes, no } [yes]") complex_cs.append("gloves ordinal { none, yarn, leather, gortex } [none]") complex_cs.append("heur1 categorical { off, on } [off]") complex_cs.append("heur2 categorical { off, on } [off]") complex_cs.append("heur_order categorical { heur1then2, heur2then1 } [heur1then2]") complex_cs.append("gloves | rain == yes || temperature == low") complex_cs.append("heur_order | heur1 == on && heur2 == on") complex_cs.append("knn_weights | classi == k_nearest_neighbors || classi != extra_trees && classi == random_forest || classi == something") complex_cs.append("temperature | weather == rainy && weather == cloudy || weather == sunny && weather != snowing") cs_new = pcs_new.read(complex_cs) self.assertEqual(cs_new, complex_conditional_space)
def test_write_restrictions(self): s = "c integer [0, 2] [0]\n" + \ "d ordinal {cold, luke-warm, hot} [cold]\n" + \ "e real [0.0, 1.0] [0.0]\n" + \ "b real [0.0, 1.0] [0.0]\n" + \ "a real [0.0, 1.0] [0.0]\n" + \ "\n" + \ "b | d in {luke-warm, hot} || c > 1\n" + \ "a | b == 0.5 && e > 0.5" a = pcs_new.read(s.split('\n')) out = pcs_new.write(a) self.assertEqual(out, s)
def test_read_new_configuration_space_easy(self): expected = StringIO() expected.write('# This is a \n') expected.write(' # This is a comment with a leading whitespace ### ffds \n') expected.write('\n') expected.write('float_a real [-1.23, 6.45] [2.61] # bla\n') expected.write('e_float_a real [.5E-2, 4.5e+06] [2250000.0025]\n') expected.write('int_a integer [-1, 6] [2]\n') expected.write('log_a real [4e-1, 6.45] [1.6062378404]log\n') expected.write('int_log_a integer [1, 6] [2]log\n') expected.write('cat_a categorical {a,"b",c,d} [a]\n') expected.write('@.:;/\?!$%&_-<>*+1234567890 categorical {"const"} ["const"]\n') expected.seek(0) cs = pcs_new.read(expected) self.assertEqual(cs, easy_space)
def test_read_new_configuration_space_easy(self): expected = StringIO() expected.write('# This is a \n') expected.write( ' # This is a comment with a leading whitespace ### ffds \n') expected.write('\n') expected.write('float_a real [-1.23, 6.45] [2.61] # bla\n') expected.write('e_float_a real [.5E-2, 4.5e+06] [2250000.0025]\n') expected.write('int_a integer [-1, 6] [2]\n') expected.write('log_a real [4e-1, 6.45] [1.6062378404]log\n') expected.write('int_log_a integer [1, 6] [2]log\n') expected.write('cat_a categorical {a,"b",c,d} [a]\n') expected.write( '@.:;/\?!$%&_-<>*+1234567890 categorical {"const"} ["const"]\n') expected.seek(0) cs = pcs_new.read(expected) self.assertEqual(cs, easy_space)
def test_read_new_configuration_space_conditional(self): # More complex search space as string array complex_cs = list() complex_cs.append("preprocessing categorical {None, pca} [None]") complex_cs.append("classifier categorical {svm, nn} [svm]") complex_cs.append("kernel categorical {rbf, poly, sigmoid} [rbf]") complex_cs.append("C real [0.03125, 32768] [32]log") complex_cs.append("neurons integer [16, 1024] [520] # Should be Q16") complex_cs.append("lr real [0.0001, 1.0] [0.50005]") complex_cs.append("degree integer [1, 5] [3]") complex_cs.append("gamma real [0.000030518, 8] [0.0156251079996]log") complex_cs.append("C | classifier in {svm}") complex_cs.append("kernel | classifier in {svm}") complex_cs.append("lr | classifier in {nn}") complex_cs.append("neurons | classifier in {nn}") complex_cs.append("degree | kernel in {poly, sigmoid}") complex_cs.append("gamma | kernel in {rbf}") cs_new = pcs_new.read(complex_cs) self.assertEqual(cs_new, conditional_space) # same in older version complex_cs_old = list() complex_cs_old.append("preprocessing {None, pca} [None]") complex_cs_old.append("classifier {svm, nn} [svm]") complex_cs_old.append("kernel {rbf, poly, sigmoid} [rbf]") complex_cs_old.append("C [0.03125, 32768] [32]l") complex_cs_old.append("neurons [16, 1024] [520]i # Should be Q16") complex_cs_old.append("lr [0.0001, 1.0] [0.50005]") complex_cs_old.append("degree [1, 5] [3]i") complex_cs_old.append("gamma [0.000030518, 8] [0.0156251079996]l") complex_cs_old.append("C | classifier in {svm}") complex_cs_old.append("kernel | classifier in {svm}") complex_cs_old.append("lr | classifier in {nn}") complex_cs_old.append("neurons | classifier in {nn}") complex_cs_old.append("degree | kernel in {poly, sigmoid}") complex_cs_old.append("gamma | kernel in {rbf}") cs_old = pcs.read(complex_cs_old) self.assertEqual(cs_old, cs_new)
def run_test(self): try: with open(configuration_space_path) as fh: cs = pcs_parser.read(fh) except: with open(configuration_space_path) as fh: cs = pcs_new_parser.read(fh) # Sample a little bit for i in range(10): cs.seed(i) configurations = cs.sample_configuration(size=5) for j, c in enumerate(configurations): c.is_valid_configuration() cs._check_configuration_rigorous(c) neighborhood = ConfigSpace.util.get_one_exchange_neighbourhood( c, seed=i) for shuffle, n in enumerate(neighborhood): n.is_valid_configuration() cs._check_configuration_rigorous(n) if shuffle == 10: break
def test_read_new_configuration_space_complex_conditionals(self): classi = OrdinalHyperparameter("classi", [ "random_forest", "extra_trees", "k_nearest_neighbors", "something" ]) knn_weights = CategoricalHyperparameter("knn_weights", ["uniform", "distance"]) weather = OrdinalHyperparameter( "weather", ["sunny", "rainy", "cloudy", "snowing"]) temperature = CategoricalHyperparameter("temperature", ["high", "low"]) rain = CategoricalHyperparameter("rain", ["yes", "no"]) gloves = OrdinalHyperparameter("gloves", ["none", "yarn", "leather", "gortex"]) heur1 = CategoricalHyperparameter("heur1", ["off", "on"]) heur2 = CategoricalHyperparameter("heur2", ["off", "on"]) heur_order = CategoricalHyperparameter("heur_order", ["heur1then2", "heur2then1"]) gloves_condition = OrConjunction( EqualsCondition(gloves, rain, "yes"), EqualsCondition(gloves, temperature, "low")) heur_condition = AndConjunction( EqualsCondition(heur_order, heur1, "on"), EqualsCondition(heur_order, heur2, "on")) and_conjunction = AndConjunction( NotEqualsCondition(knn_weights, classi, "extra_trees"), EqualsCondition(knn_weights, classi, "random_forest")) Cl_condition = OrConjunction( EqualsCondition(knn_weights, classi, "k_nearest_neighbors"), and_conjunction, EqualsCondition(knn_weights, classi, "something")) and1 = AndConjunction(EqualsCondition(temperature, weather, "rainy"), EqualsCondition(temperature, weather, "cloudy")) and2 = AndConjunction( EqualsCondition(temperature, weather, "sunny"), NotEqualsCondition(temperature, weather, "snowing")) another_condition = OrConjunction(and1, and2) complex_conditional_space = ConfigurationSpace() complex_conditional_space.add_hyperparameter(classi) complex_conditional_space.add_hyperparameter(knn_weights) complex_conditional_space.add_hyperparameter(weather) complex_conditional_space.add_hyperparameter(temperature) complex_conditional_space.add_hyperparameter(rain) complex_conditional_space.add_hyperparameter(gloves) complex_conditional_space.add_hyperparameter(heur1) complex_conditional_space.add_hyperparameter(heur2) complex_conditional_space.add_hyperparameter(heur_order) complex_conditional_space.add_condition(gloves_condition) complex_conditional_space.add_condition(heur_condition) complex_conditional_space.add_condition(Cl_condition) complex_conditional_space.add_condition(another_condition) complex_cs = list() complex_cs.append( "classi ordinal {random_forest,extra_trees,k_nearest_neighbors, something} [random_forest]" ) complex_cs.append( "knn_weights categorical {uniform, distance} [uniform]") complex_cs.append( "weather ordinal {sunny, rainy, cloudy, snowing} [sunny]") complex_cs.append("temperature categorical {high, low} [high]") complex_cs.append("rain categorical { yes, no } [yes]") complex_cs.append( "gloves ordinal { none, yarn, leather, gortex } [none]") complex_cs.append("heur1 categorical { off, on } [off]") complex_cs.append("heur2 categorical { off, on } [off]") complex_cs.append( "heur_order categorical { heur1then2, heur2then1 } [heur1then2]") complex_cs.append("gloves | rain == yes || temperature == low") complex_cs.append("heur_order | heur1 == on && heur2 == on") complex_cs.append( "knn_weights | classi == k_nearest_neighbors || classi != extra_trees && classi == random_forest || classi == something" ) complex_cs.append( "temperature | weather == rainy && weather == cloudy || weather == sunny && weather != snowing" ) cs_new = pcs_new.read(complex_cs) self.assertEqual(cs_new, complex_conditional_space)
# TODO: make the default! ignore_parameters = fixed_parameters_to_ignore_parameters( args.fixed_parameters) runhistory_path, configspace_path = openmlpimp.utils.cache_runhistory_configspace( task_cache_folder, args.flow_id, task_id, model_type=args.model_type, required_setups=args.required_setups, reverse=False, fixed_parameters=args.fixed_parameters, ignore_parameters=ignore_parameters) if total_ranks is None: with open(configspace_path) as configspace_file: configspace = read(configspace_file) total_ranks = { param.name: 0 for param in configspace.get_hyperparameters() } if args.modus == 'fanova': print('Running FANOVA backend on task %d' % task_id) results_file = FanovaBackend.execute( task_save_folder, runhistory_path, configspace_path, use_percentiles=args.use_quantiles, interaction_effect=args.interaction_effect, run_limit=args.limit, draw_plots=args.draw_plots)
def execute(save_folder, runhistory_location, configspace_location, manual_logtransform=True, use_percentiles=True, interaction_effect=True, run_limit=None, draw_plots=True): with open(runhistory_location) as runhistory_file: runhistory = json.load(runhistory_file) with open(configspace_location) as configspace_file: configspace = read(configspace_file) try: os.makedirs(save_folder) except FileExistsError: pass X = [] y = [] for item in runhistory['data']: if run_limit is not None and len(X) > run_limit: break valid = True current = [] setup_id = str(item[0][0]) configuration = runhistory['configs'][setup_id] for param in configspace.get_hyperparameters(): value = configuration[param.name] if isinstance(param, UniformFloatHyperparameter) and not isinstance( value, float): valid = False elif isinstance( param, UniformIntegerHyperparameter) and not isinstance( value, int): valid = False if isinstance(param, CategoricalHyperparameter): value = param.choices.index(value) elif param.log and manual_logtransform: value = np.log(value) current.append(value) if valid: X.append(current) y.append(item[1][0]) else: print('Illegal configuration', current) X = np.array(X) y = np.array(y) if manual_logtransform: configspace = openmlpimp.utils.scale_configspace_to_log( configspace) cutoffs = (-np.inf, np.inf) if use_percentiles: p75 = np.percentile(y, 75.0) p100 = np.percentile(y, 100.0) cutoffs = (p75, p100) # start the evaluator evaluator = fanova_pyrfr(X=X, Y=y, config_space=configspace, config_on_hypercube=False, cutoffs=cutoffs) # obtain the results params = configspace.get_hyperparameters() result = {} for idx, param in enumerate(params): importance = evaluator.quantify_importance( [idx])[(idx, )]['total importance'] result[param.name] = importance # store main results to disk filename = 'pimp_values_fanova.json' with open(os.path.join(save_folder, filename), 'w') as out_file: json.dump(result, out_file, sort_keys=True, indent=4, separators=(',', ': ')) # call plotting fn yrange = (0, 1) if use_percentiles: yrange = (p75, p100) if draw_plots: FanovaBackend._plot_result(evaluator, configspace, save_folder + '/fanova', yrange) if interaction_effect: result_interaction = {} for idx, param in enumerate(params): for idx2, param2 in enumerate(params): if param.name >= param2.name: # string comparison cause stable continue print('interaction effects between', param.name, param2.name) interaction = evaluator.quantify_importance( [idx, idx2])[(idx, idx2)]['total importance'] interaction -= result[param.name] interaction -= result[param2.name] combined_name = param.name + '__' + param2.name if interaction < 0.0: raise ValueError( 'interaction score too low. Params: %s score %d' % (combined_name, interaction)) result_interaction[combined_name] = interaction for idx, param in enumerate(params): for idx2, param2 in enumerate(params): if param.name >= param2.name: # string comparison cause stable continue for idx3, param3 in enumerate(params): if param2.name >= param3.name: # string comparison cause stable continue print('interaction effects between', param.name, param2.name, param3.name) interaction = evaluator.quantify_importance( [idx, idx2, idx3])[(idx, idx2, idx3)]['total importance'] interaction -= result[param.name] interaction -= result[param2.name] interaction -= result[param3.name] combined_name = param.name + '__' + param2.name + '__' + param3.name interaction -= result_interaction[param.name + '__' + param2.name] interaction -= result_interaction[param2.name + '__' + param3.name] interaction -= result_interaction[param.name + '__' + param3.name] if interaction < 0.0: raise ValueError( 'interaction score too low. Params: %s score %d' % (combined_name, interaction)) result_interaction[combined_name] = interaction # store interaction effects to disk if sum(result_interaction.values()) + sum(result.values()) > 1: raise ValueError('Sum of results too high') with open( os.path.join(save_folder, 'pimp_values_fanova_interaction.json'), 'w') as out_file: json.dump(result_interaction, out_file, sort_keys=True, indent=4, separators=(',', ': ')) if draw_plots: vis = Visualizer(evaluator, configspace) vis.create_most_important_pairwise_marginal_plots( save_folder + '/fanova', zlabel='Predictive Accuracy') return save_folder + "/" + filename