Пример #1
0
    def get_hyperparameter_search_space(self, mf: MetaFeaturesDict = None,
                                        default=None,
                                        include=None,
                                        exclude=None,
                                        **kwargs):
        if include is not None and exclude is not None:
            raise ValueError("The arguments include and exclude cannot be used together.")
        cs = ConfigurationSpace()

        # Compile a list of all estimator objects for this problem
        available_estimators = self.get_available_components(mf=mf, include=include, exclude=exclude)

        if len(available_estimators) == 0:
            raise ValueError("No classifiers found")

        if default is None:
            for default_ in self.defaults:
                if default_ in available_estimators:
                    if include is not None and default_ not in include:
                        continue
                    if exclude is not None and default_ in exclude:
                        continue
                    default = default_
                    break

        estimator = CategoricalHyperparameter('__choice__', list(available_estimators.keys()), default_value=default)
        cs.add_hyperparameter(estimator)
        for estimator_name in available_estimators.keys():
            estimator_configuration_space = available_estimators[estimator_name].get_hyperparameter_search_space()
            parent_hyperparameter = {'parent': estimator, 'value': estimator_name}
            cs.add_configuration_space(estimator_name, estimator_configuration_space,
                                       parent_hyperparameter=parent_hyperparameter)

        self.configuration_space_ = cs
        return cs
Пример #2
0
def get_combined_cs(estimator_id,
                    task_type=REGRESSION,
                    include_image=False,
                    include_text=False,
                    include_preprocessors=None,
                    if_imbal=False):
    cs = ConfigurationSpace()
    hpo_cs = get_hpo_cs(estimator_id, task_type)
    fe_cs = get_fe_cs(estimator_id,
                      task_type,
                      include_image=include_image,
                      include_text=include_text,
                      include_preprocessors=include_preprocessors)
    config_cand = [estimator_id]
    config_option = CategoricalHyperparameter('hpo', config_cand)
    cs.add_hyperparameter(config_option)
    for config_item in config_cand:
        sub_configuration_space = hpo_cs
        parent_hyperparameter = {'parent': config_option, 'value': config_item}
        cs.add_configuration_space(config_item,
                                   sub_configuration_space,
                                   parent_hyperparameter=parent_hyperparameter)
    for hp in fe_cs.get_hyperparameters():
        cs.add_hyperparameter(hp)
    for cond in fe_cs.get_conditions():
        cs.add_condition(cond)
    for bid in fe_cs.get_forbiddens():
        cs.add_forbidden_clause(bid)
    return cs
Пример #3
0
    def get_pipeline_config_space(self, algorithm_candidates):
        cs = ConfigurationSpace()
        estimator_choice = CategoricalHyperparameter(
            "estimator",
            algorithm_candidates,
            default_value=algorithm_candidates[0])
        cs.add_hyperparameter(estimator_choice)
        if self.task_type == IMG_CLS:
            aug_space = get_aug_hyperparameter_space()
            cs.add_hyperparameters(aug_space.get_hyperparameters())
            cs.add_conditions(aug_space.get_conditions())

        for estimator_id in algorithm_candidates:
            sub_cs = self.get_model_config_space(estimator_id,
                                                 include_estimator=False,
                                                 include_aug=False)
            parent_hyperparameter = {
                'parent': estimator_choice,
                'value': estimator_id
            }
            cs.add_configuration_space(
                estimator_id,
                sub_cs,
                parent_hyperparameter=parent_hyperparameter)
        return cs
Пример #4
0
 def get_child_hyperparameter_search_space(children: List[Tuple[str, EstimatorComponent]],
                                           mf: Optional[MetaFeaturesDict] = None) -> ConfigurationSpace:
     cs = ConfigurationSpace()
     for name, step in children:
         try:
             step_configuration_space = step.get_hyperparameter_search_space(mf=mf)
         except TypeError:
             step_configuration_space = step.get_hyperparameter_search_space()
         except AttributeError:
             # Provided step does not provide a configuration space the expected way.
             # Simply pretend it is not configurable
             step_configuration_space = ConfigurationSpace()
         cs.add_configuration_space(name, step_configuration_space)
     return cs
Пример #5
0
def get_cash_cs(include_algorithms=None, task_type=CLASSIFICATION):
    _candidates = get_combined_candidtates(_classifiers, _addons)
    if include_algorithms is not None:
        _candidates = set(include_algorithms).intersection(set(_candidates.keys()))
        if len(_candidates) == 0:
            raise ValueError("No algorithms included! Please check the spelling of the included algorithms!")
    cs = ConfigurationSpace()
    algo = CategoricalHyperparameter('algorithm', list(_candidates))
    cs.add_hyperparameter(algo)
    for estimator_id in _candidates:
        estimator_cs = get_hpo_cs(estimator_id)
        parent_hyperparameter = {'parent': algo,
                                 'value': estimator_id}
        cs.add_configuration_space(estimator_id, estimator_cs, parent_hyperparameter=parent_hyperparameter)
    return cs
Пример #6
0
 def test_meta_field(self):
     cs = ConfigurationSpace()
     cs.add_hyperparameter(
         UniformIntegerHyperparameter("uihp",
                                      lower=1,
                                      upper=10,
                                      meta=dict(uihp=True)))
     cs.add_hyperparameter(
         NormalIntegerHyperparameter("nihp",
                                     mu=0,
                                     sigma=1,
                                     meta=dict(nihp=True)))
     cs.add_hyperparameter(
         UniformFloatHyperparameter("ufhp",
                                    lower=1,
                                    upper=10,
                                    meta=dict(ufhp=True)))
     cs.add_hyperparameter(
         NormalFloatHyperparameter("nfhp",
                                   mu=0,
                                   sigma=1,
                                   meta=dict(nfhp=True)))
     cs.add_hyperparameter(
         CategoricalHyperparameter("chp",
                                   choices=['1', '2', '3'],
                                   meta=dict(chp=True)))
     cs.add_hyperparameter(
         OrdinalHyperparameter("ohp",
                               sequence=['1', '2', '3'],
                               meta=dict(ohp=True)))
     cs.add_hyperparameter(Constant("const", value=1,
                                    meta=dict(const=True)))
     parent = ConfigurationSpace()
     parent.add_configuration_space("sub", cs, delimiter=':')
     self.assertEqual(
         parent.get_hyperparameter("sub:uihp").meta, dict(uihp=True))
     self.assertEqual(
         parent.get_hyperparameter("sub:nihp").meta, dict(nihp=True))
     self.assertEqual(
         parent.get_hyperparameter("sub:ufhp").meta, dict(ufhp=True))
     self.assertEqual(
         parent.get_hyperparameter("sub:nfhp").meta, dict(nfhp=True))
     self.assertEqual(
         parent.get_hyperparameter("sub:chp").meta, dict(chp=True))
     self.assertEqual(
         parent.get_hyperparameter("sub:ohp").meta, dict(ohp=True))
     self.assertEqual(
         parent.get_hyperparameter("sub:const").meta, dict(const=True))
Пример #7
0
    def _generate_pipeline(self, depth: int) -> \
            Tuple[ConfigurationSpace, List[Tuple[str, EstimatorComponent]]]:
        cs = ConfigurationSpace()
        steps = []
        i = 0

        while i < depth:
            name = f'step_{i}'
            clazz = random.sample(self.candidates, 1)[0]
            instance = clazz()
            steps.append((name, instance))
            cs.add_configuration_space(
                name, instance.get_hyperparameter_search_space())

            i += 1
        return cs, steps
Пример #8
0
    def test_subspace_switches(self):
        # create a switch to select one of two algorithms
        algo_switch = CategoricalHyperparameter(
            name="switch",
            choices=["algo1", "algo2"],
            weights=[0.25, 0.75],
            default_value="algo1"
        )

        # create sub-configuration space for algorithm 1
        algo1_cs = ConfigurationSpace()
        hp1 = CategoricalHyperparameter(name="algo1_param1", choices=["A", "B"], weights=[0.3, 0.7], default_value="B")
        algo1_cs.add_hyperparameter(hp1)

        # create sub-configuration space for algorithm 2
        algo2_cs = ConfigurationSpace()
        hp2 = CategoricalHyperparameter(name="algo2_param1", choices=["X", "Y"], default_value="Y")
        algo2_cs.add_hyperparameter(hp2)

        # create a configuration space and populate it with both the switch and the two sub-configuration spaces
        cs = ConfigurationSpace()
        cs.add_hyperparameter(algo_switch)
        cs.add_configuration_space(
            prefix="algo1_subspace",
            configuration_space=algo1_cs,
            parent_hyperparameter={'parent': algo_switch, 'value': "algo1"}
        )
        cs.add_configuration_space(
            prefix="algo2_subspace",
            configuration_space=algo2_cs,
            parent_hyperparameter={'parent': algo_switch, 'value': "algo2"}
        )

        # check choices in the final configuration space
        self.assertEqual(("algo1", "algo2"), cs.get_hyperparameter("switch").choices)
        self.assertEqual(("A", "B"), cs.get_hyperparameter("algo1_subspace:algo1_param1").choices)
        self.assertEqual(("X", "Y"), cs.get_hyperparameter("algo2_subspace:algo2_param1").choices)

        # check probabilities in the final configuration space
        self.assertEqual((0.25, 0.75), cs.get_hyperparameter("switch").probabilities)
        self.assertEqual((0.3, 0.7), cs.get_hyperparameter("algo1_subspace:algo1_param1").probabilities)
        self.assertEqual(None, cs.get_hyperparameter("algo2_subspace:algo2_param1").probabilities)

        # check default values in the final configuration space
        self.assertEqual("algo1", cs.get_hyperparameter("switch").default_value)
        self.assertEqual("B", cs.get_hyperparameter("algo1_subspace:algo1_param1").default_value)
        self.assertEqual("Y", cs.get_hyperparameter("algo2_subspace:algo2_param1").default_value)
    def test_add_configuration_space(self):
        cs = ConfigurationSpace()
        hp1 = cs.add_hyperparameter(CategoricalHyperparameter("input1", [0, 1]))
        cs.add_forbidden_clause(ForbiddenEqualsClause(hp1, 1))
        hp2 = cs.add_hyperparameter(UniformIntegerHyperparameter("child", 0, 10))
        cs.add_condition(EqualsCondition(hp2, hp1, 0))
        cs2 = ConfigurationSpace()
        cs2.add_configuration_space('prefix', cs, delimiter='__')
        self.assertEqual(str(cs2), '''Configuration space object:
  Hyperparameters:
    prefix__child, Type: UniformInteger, Range: [0, 10], Default: 5
    prefix__input1, Type: Categorical, Choices: {0, 1}, Default: 0
  Conditions:
    prefix__child | prefix__input1 == 0
  Forbidden Clauses:
    Forbidden: prefix__input1 == 1
''')
Пример #10
0
    def test_add_configuration_space(self):
        cs = ConfigurationSpace()
        hp1 = cs.add_hyperparameter(CategoricalHyperparameter("input1", [0, 1]))
        cs.add_forbidden_clause(ForbiddenEqualsClause(hp1, 1))
        hp2 = cs.add_hyperparameter(UniformIntegerHyperparameter("child", 0, 10))
        cs.add_condition(EqualsCondition(hp2, hp1, 0))
        cs2 = ConfigurationSpace()
        cs2.add_configuration_space('prefix', cs, delimiter='__')
        self.assertEqual(str(cs2), '''Configuration space object:
  Hyperparameters:
    prefix__child, Type: UniformInteger, Range: [0, 10], Default: 5
    prefix__input1, Type: Categorical, Choices: {0, 1}, Default: 0
  Conditions:
    prefix__child | prefix__input1 == 0
  Forbidden Clauses:
    Forbidden: prefix__input1 == 1
''')
Пример #11
0
 def add_configuration_space(self,
                             cs: ConfigurationSpace,
                             cs_name: str,
                             hdl_value: dict,
                             is_choice: bool,
                             option_hp: Configuration,
                             children_is_choice=False):
     if is_choice:
         cs.add_configuration_space(cs_name,
                                    self.recursion(hdl_value,
                                                   children_is_choice),
                                    parent_hyperparameter={
                                        "parent": option_hp,
                                        "value": cs_name
                                    })
     else:
         cs.add_configuration_space(
             cs_name, self.recursion(hdl_value, children_is_choice))
    def test_add_configuration_space_conjunctions(self):
        cs1 = ConfigurationSpace()
        cs2 = ConfigurationSpace()

        hp1 = cs1.add_hyperparameter(CategoricalHyperparameter("input1", [0, 1]))
        hp2 = cs1.add_hyperparameter(CategoricalHyperparameter("input2", [0, 1]))
        hp3 = cs1.add_hyperparameter(UniformIntegerHyperparameter("child1", 0, 10))
        hp4 = cs1.add_hyperparameter(UniformIntegerHyperparameter("child2", 0, 10))

        cond1 = EqualsCondition(hp2, hp3, 0)
        cond2 = EqualsCondition(hp1, hp3, 5)
        cond3 = EqualsCondition(hp1, hp4, 1)
        andCond = AndConjunction(cond2, cond3)

        cs1.add_conditions([cond1, andCond])
        cs2.add_configuration_space(prefix='test', configuration_space=cs1)

        self.assertEqual(str(cs2).count('test:'), 10)
        # Check that they're equal except for the "test:" prefix
        self.assertEqual(str(cs1), str(cs2).replace('test:', ''))
Пример #13
0
    def test_add_configuration_space_conjunctions(self):
        cs1 = ConfigurationSpace()
        cs2 = ConfigurationSpace()

        hp1 = cs1.add_hyperparameter(CategoricalHyperparameter("input1", [0, 1]))
        hp2 = cs1.add_hyperparameter(CategoricalHyperparameter("input2", [0, 1]))
        hp3 = cs1.add_hyperparameter(UniformIntegerHyperparameter("child1", 0, 10))
        hp4 = cs1.add_hyperparameter(UniformIntegerHyperparameter("child2", 0, 10))

        cond1 = EqualsCondition(hp2, hp3, 0)
        cond2 = EqualsCondition(hp1, hp3, 5)
        cond3 = EqualsCondition(hp1, hp4, 1)
        andCond = AndConjunction(cond2, cond3)

        cs1.add_conditions([cond1, andCond])
        cs2.add_configuration_space(prefix='test', configuration_space=cs1)

        self.assertEqual(str(cs2).count('test:'), 10)
        # Check that they're equal except for the "test:" prefix
        self.assertEqual(str(cs1), str(cs2).replace('test:', ''))
Пример #14
0
def get_combined_cs(estimator_id, node, task_type=0):
    cs = ConfigurationSpace()
    hpo_cs = get_hpo_cs(estimator_id, task_type)
    fe_cs = get_fe_cs(estimator_id, node, task_type)
    config_cand = ['placeholder']
    config_option = CategoricalHyperparameter('hpo', config_cand)
    cs.add_hyperparameter(config_option)
    for config_item in config_cand:
        sub_configuration_space = hpo_cs
        parent_hyperparameter = {'parent': config_option, 'value': config_item}
        cs.add_configuration_space(config_item,
                                   sub_configuration_space,
                                   parent_hyperparameter=parent_hyperparameter)
    for hp in fe_cs.get_hyperparameters():
        cs.add_hyperparameter(hp)
    for cond in fe_cs.get_conditions():
        cs.add_condition(cond)
    for bid in fe_cs.get_forbiddens():
        cs.add_forbidden_clause(bid)
    model = UnParametrizedHyperparameter("estimator", estimator_id)
    cs.add_hyperparameter(model)
    return cs
Пример #15
0
 def test_add_configuration_space_probabilities(self):
     from copy import copy, deepcopy
     from pickle import dumps, loads
     weights = [0.25, 0.5, 0.25]
     hp = CategoricalHyperparameter("B", ["1", "2", "3"], weights=weights)
     sub_cs = ConfigurationSpace()
     sub_cs.add_hyperparameter(hp)
     cs = ConfigurationSpace()
     cs.add_configuration_space("A", sub_cs)
     self.assertEqual(
         deepcopy(sub_cs).get_hyperparameter("B").probabilities, weights)
     self.assertEqual(
         copy(sub_cs).get_hyperparameter("B").probabilities, weights)
     self.assertEqual(
         loads(dumps(sub_cs)).get_hyperparameter("B").probabilities,
         weights)
     self.assertEqual(cs.get_hyperparameter("A:B").probabilities, weights)
     self.assertEqual(
         deepcopy(cs).get_hyperparameter("A:B").probabilities, weights)
     self.assertEqual(
         copy(cs).get_hyperparameter("A:B").probabilities, weights)
     self.assertEqual(
         loads(dumps(cs)).get_hyperparameter("A:B").probabilities, weights)
Пример #16
0
    def build_hierarchical_configspace(config_dict):
        """
        Reference: pipeline/base=325, classification/__init__=121
        """
        cs = ConfigurationSpace()
        candidates = list(config_dict.keys())
        # TODO: set the default model.
        model_option = CategoricalHyperparameter("estimator",
                                                 candidates,
                                                 default_value=candidates[0])
        cs.add_hyperparameter(model_option)

        for model_item in candidates:
            sub_configuration_space = config_dict[model_item]
            parent_hyperparameter = {
                'parent': model_option,
                'value': model_item
            }
            cs.add_configuration_space(
                model_item,
                sub_configuration_space,
                parent_hyperparameter=parent_hyperparameter)
        return cs
Пример #17
0
def get_combined_cs(node, task_type=0):
    cs = ConfigurationSpace()
    config_cand = []
    cand_space = {}
    for estimator_id in _classifiers:
        cand_space[estimator_id] = get_hpo_cs(estimator_id, task_type)
        config_cand.append(estimator_id)

    config_option = CategoricalHyperparameter('estimator', config_cand)
    cs.add_hyperparameter(config_option)
    for config_item in config_cand:
        sub_configuration_space = cand_space[config_item]
        parent_hyperparameter = {'parent': config_option,
                                 'value': config_item}
        cs.add_configuration_space(config_item, sub_configuration_space,
                                   parent_hyperparameter=parent_hyperparameter)
    fe_cs = get_fe_cs(estimator_id, node, task_type)
    for hp in fe_cs.get_hyperparameters():
        cs.add_hyperparameter(hp)
    for cond in fe_cs.get_conditions():
        cs.add_condition(cond)
    for bid in fe_cs.get_forbiddens():
        cs.add_forbidden_clause(bid)
    return cs
Пример #18
0
#     preprocessing:0num->final:scale.standardize:placeholder | preprocessing:0num->final:__choice__ == 'scale.standardize'

# scale.standardize
standardize_cs = ConfigurationSpace()
standardize_cs.add_hyperparameter(Constant("copy", "True:bool"))
# scale.normalize
normalize_cs = ConfigurationSpace()
normalize_cs.add_hyperparameter(Constant("copy", "True:bool"))
# scale
scale_cs = ConfigurationSpace()
scale_choice = CategoricalHyperparameter(
    '__choice__', ["scale.standardize", "scale.normalize"])
scale_cs.add_hyperparameter(scale_choice)
scale_cs.add_configuration_space("scale.standardize",
                                 standardize_cs,
                                 parent_hyperparameter={
                                     "parent": scale_choice,
                                     "value": "scale.standardize"
                                 })
scale_cs.add_configuration_space("scale.normalize",
                                 normalize_cs,
                                 parent_hyperparameter={
                                     "parent": scale_choice,
                                     "value": "scale.normalize"
                                 })

# reduce.pca
pca_cs = ConfigurationSpace()
pca_cs.add_hyperparameter(Constant("whiten", "True:bool"))
# reduce.ica
ica_cs = ConfigurationSpace()
ica_cs.add_hyperparameter(Constant("whiten", "True:bool"))
Пример #19
0
    def recursion(self, hdl: Dict, path=()) -> ConfigurationSpace:
        cs = ConfigurationSpace()
        # 检测一下这个dict是否在直接描述超参
        key_list = list(hdl.keys())
        if len(key_list) == 0:
            cs.add_hyperparameter(Constant("placeholder", "placeholder"))
            return cs
        else:
            sample_key = key_list[0]
            sample_value = hdl[sample_key]
            if is_hdl_bottom(sample_key, sample_value):
                store = {}
                conditions_dict = {}
                for key, value in hdl.items():
                    if purify_key(key).startswith("__"):
                        conditions_dict[key] = value
                    else:
                        hp = self.__parse_dict_to_config(key, value)
                        cs.add_hyperparameter(hp)
                        store[key] = hp
                for key, value in conditions_dict.items():
                    if SERIES_CONNECT_LEADER_TOKEN in key:
                        leader_model, condition_indicator = key.split(
                            SERIES_CONNECT_LEADER_TOKEN)
                    else:
                        leader_model, condition_indicator = None, key

                    if condition_indicator == "__condition":
                        assert isinstance(value, list)
                        for item in value:
                            cond = self.__condition(item, store, leader_model)
                            cs.add_condition(cond)
                    elif condition_indicator == "__activate":
                        self.__activate(value, store, cs, leader_model)
                    elif condition_indicator == "__forbidden":
                        self.__forbidden(value, store, cs, leader_model)
                    elif condition_indicator == "__rely_model":
                        RelyModels.info.append([value, deepcopy(path)])

                return cs
        pattern = re.compile(r"(.*)\((.*)\)")
        for key, value in hdl.items():
            mat = pattern.match(key)
            if mat:
                groups = mat.groups()
                assert len(groups) == 2
                prefix_name, method = groups
                value_list = list(value.keys())
                assert len(value_list) >= 1
                if method == "choice":
                    pass
                else:
                    raise NotImplementedError()
                cur_cs = ConfigurationSpace()
                assert isinstance(value, dict)
                # 不能用constant,会报错
                choice2proba = {}
                not_specific_proba_choices = []
                sum_proba = 0
                for k in value_list:
                    v = value[k]
                    if isinstance(v, dict) and "__proba" in v:
                        proba = v.pop("__proba")
                        choice2proba[k] = proba
                        sum_proba += proba
                    else:
                        not_specific_proba_choices.append(k)
                if sum_proba <= 1:
                    if len(not_specific_proba_choices) > 0:
                        p_rest = (1 -
                                  sum_proba) / len(not_specific_proba_choices)
                        for not_specific_proba_choice in not_specific_proba_choices:
                            choice2proba[not_specific_proba_choice] = p_rest
                else:
                    choice2proba = {k: 1 / len(value_list) for k in value_list}
                proba_list = [choice2proba[k] for k in value_list]
                value_list = list(map(smac_hdl._encode,
                                      value_list))  # choices must be str

                option_param = CategoricalHyperparameter(
                    '__choice__', value_list,
                    weights=proba_list)  # todo : default
                cur_cs.add_hyperparameter(option_param)
                for sub_key, sub_value in value.items():
                    assert isinstance(sub_value, dict)
                    sub_cs = self.recursion(sub_value,
                                            path=list(path) +
                                            [prefix_name, sub_key])
                    parent_hyperparameter = {
                        'parent': option_param,
                        'value': sub_key
                    }
                    cur_cs.add_configuration_space(
                        sub_key,
                        sub_cs,
                        parent_hyperparameter=parent_hyperparameter)
                cs.add_configuration_space(prefix_name, cur_cs)
            elif isinstance(value, dict):
                sub_cs = self.recursion(value, path=list(path) + [key])
                cs.add_configuration_space(key, sub_cs)
            else:
                raise NotImplementedError()

        return cs