Пример #1
0
    def test_uniformfloat_transform(self):
        """This checks whether a value sampled through the configuration
        space (it does not happend when the variable is sampled alone) stays
        equal when it is serialized via JSON and the deserialized again."""

        cs = ConfigurationSpace()
        a = cs.add_hyperparameter(UniformFloatHyperparameter('a', -5, 10))
        b = cs.add_hyperparameter(
            NormalFloatHyperparameter('b', 1, 2, log=True))
        for i in range(100):
            config = cs.sample_configuration()
            value = OrderedDict(sorted(config.get_dictionary().items()))
            string = json.dumps(value)
            saved_value = json.loads(string)
            saved_value = OrderedDict(sorted(byteify(saved_value).items()))
            self.assertEqual(repr(value), repr(saved_value))

        # Next, test whether the truncation also works when initializing the
        # Configuration with a dictionary
        for i in range(100):
            rs = np.random.RandomState(1)
            value_a = a.sample(rs)
            value_b = b.sample(rs)
            values_dict = {'a': value_a, 'b': value_b}
            config = Configuration(cs, values=values_dict)
            string = json.dumps(config.get_dictionary())
            saved_value = json.loads(string)
            saved_value = byteify(saved_value)
            self.assertEqual(values_dict, saved_value)
Пример #2
0
def impute_inactive_values(configuration: Configuration, strategy: Union[str, float]='default') -> Configuration:
    """Impute inactive parameters.

    Parameters
    ----------
    strategy : string, optional (default='default')
        The imputation strategy.

        - If 'default', replace inactive parameters by their default.
        - If float, replace inactive parameters by the given float value,
          which should be able to be splitted apart by a tree-based model.
    """
    values = dict()
    for hp in configuration.configuration_space.get_hyperparameters():
        value = configuration.get(hp.name)
        if value is None:

            if strategy == 'default':
                new_value = hp.default_value

            elif isinstance(strategy, float):
                new_value = strategy

            else:
                raise ValueError('Unknown imputation strategy %s' % str(strategy))

            value = new_value

        values[hp.name] = value

    new_configuration = Configuration(configuration.configuration_space,
                                      values=values,
                                      allow_inactive_with_values=True)
    return new_configuration
Пример #3
0
    def test_check_neighbouring_config_diamond_str(self):
        diamond = ConfigurationSpace()
        head = CategoricalHyperparameter('head', ['red', 'green'])
        left = CategoricalHyperparameter('left', ['red', 'green'])
        right = CategoricalHyperparameter('right',
                                          ['red', 'green', 'blue', 'yellow'])
        bottom = CategoricalHyperparameter('bottom', ['red', 'green'])
        diamond.add_hyperparameters([head, left, right, bottom])
        diamond.add_condition(EqualsCondition(left, head, 'red'))
        diamond.add_condition(EqualsCondition(right, head, 'red'))
        diamond.add_condition(
            AndConjunction(EqualsCondition(bottom, left, 'green'),
                           EqualsCondition(bottom, right, 'green')))

        config = Configuration(diamond, {
            'bottom': 'red',
            'head': 'red',
            'left': 'green',
            'right': 'green'
        })
        hp_name = "head"
        index = diamond.get_idx_by_hyperparameter_name(hp_name)
        neighbor_value = 1

        new_array = ConfigSpaceNNI.c_util.change_hp_value(
            diamond, config.get_array(), hp_name, neighbor_value, index)
        expected_array = np.array([1, np.nan, np.nan, np.nan])

        np.testing.assert_almost_equal(new_array, expected_array)
Пример #4
0
    def test_check_forbidden_with_sampled_vector_configuration(self):
        cs = ConfigurationSpace()
        metric = CategoricalHyperparameter("metric", ["minkowski", "other"])
        cs.add_hyperparameter(metric)

        forbidden = ForbiddenEqualsClause(metric, "other")
        cs.add_forbidden_clause(forbidden)
        configuration = Configuration(cs, vector=np.ones(1, dtype=float))
        self.assertRaisesRegexp(ValueError, "violates forbidden clause",
                                cs._check_forbidden, configuration.get_array())
Пример #5
0
def deactivate_inactive_hyperparameters(
        configuration: Dict,
        configuration_space: ConfigurationSpace,
):
    hyperparameters = configuration_space.get_hyperparameters()
    configuration = Configuration(configuration_space=configuration_space,
                                  values=configuration,
                                  allow_inactive_with_values=True)

    hps = deque()

    unconditional_hyperparameters = configuration_space.get_all_unconditional_hyperparameters()
    hyperparameters_with_children = list()
    for uhp in unconditional_hyperparameters:
        children = configuration_space._children_of[uhp]
        if len(children) > 0:
            hyperparameters_with_children.append(uhp)
    hps.extendleft(hyperparameters_with_children)

    inactive = set()

    while len(hps) > 0:
        hp = hps.pop()
        children = configuration_space._children_of[hp]
        for child in children:
            conditions = configuration_space._parent_conditions_of[child.name]
            for condition in conditions:
                if not condition.evaluate_vector(configuration.get_array()):
                    dic = configuration.get_dictionary()
                    try:
                        del dic[child.name]
                    except KeyError:
                        continue
                    configuration = Configuration(
                        configuration_space=configuration_space,
                        values=dic,
                        allow_inactive_with_values=True)
                    inactive.add(child.name)
                hps.appendleft(child.name)

    for hp in hyperparameters:
        if hp.name in inactive:
            dic = configuration.get_dictionary()
            try:
                del dic[hp.name]
            except KeyError:
                continue
            configuration = Configuration(
                configuration_space=configuration_space,
                values=dic,
                allow_inactive_with_values=True)

    return Configuration(configuration_space, values=configuration.get_dictionary())
Пример #6
0
    def test_check_configuration2(self):
        # Test that hyperparameters which are not active must not be set and
        # that evaluating forbidden clauses does not choke on missing
        # hyperparameters
        cs = ConfigurationSpace()
        classifier = CategoricalHyperparameter(
            "classifier", ["k_nearest_neighbors", "extra_trees"])
        metric = CategoricalHyperparameter("metric", ["minkowski", "other"])
        p = CategoricalHyperparameter("k_nearest_neighbors:p", [1, 2])
        metric_depends_on_classifier = EqualsCondition(metric, classifier,
                                                       "k_nearest_neighbors")
        p_depends_on_metric = EqualsCondition(p, metric, "minkowski")
        cs.add_hyperparameter(metric)
        cs.add_hyperparameter(p)
        cs.add_hyperparameter(classifier)
        cs.add_condition(metric_depends_on_classifier)
        cs.add_condition(p_depends_on_metric)

        forbidden = ForbiddenEqualsClause(metric, "other")
        cs.add_forbidden_clause(forbidden)

        configuration = Configuration(cs, dict(classifier="extra_trees"))

        # check backward compatibility with checking configurations instead of vectors
        cs.check_configuration(configuration)
Пример #7
0
def generate_config(cs, rs):
    i = rs.randint(-10, 10)
    f = rs.rand(1)[0]
    seed = rs.randint(0, 10000)

    # 'a' occurs more often than 'b'
    c = 'a' if rs.binomial(1, 0.2) == 0 else 'b'

    # We have 100 instance, but prefer the middle ones
    instance_id = int(rs.normal(loc=50, scale=20, size=1)[0])
    instance_id = min(max(0, instance_id), 100)

    status = StatusType.SUCCESS
    runtime = 10**(numpy.sin(i)+f) + seed/10000 - numpy.sin(instance_id)

    if runtime > 40:
        status = StatusType.TIMEOUT
        runtime = 40
    elif instance_id > 50 and runtime > 15:
        # This is a timeout with probability 0.5
        status = StatusType.TIMEOUT
        runtime /= 2.0

    config = Configuration(cs, values={'cat_a_b': c, 'float_0_1': f,
                                       'integer_0_100': i})

    return config, seed, runtime, status, instance_id
Пример #8
0
    def setUp(self):
        unittest.TestCase.setUp(self)

        self.rh = runhistory.RunHistory(aggregate_func=average_cost)
        self.cs = get_config_space()
        self.config1 = Configuration(self.cs,
                                     values={'a': 0, 'b': 100})
        self.config2 = Configuration(self.cs,
                                     values={'a': 100, 'b': 0})
        self.config3 = Configuration(self.cs,
                                     values={'a': 100, 'b': 100})

        self.scen = Scenario({'run_obj': 'runtime', 'cutoff_time': 20,
                              'cs': self.cs})
        self.types, self.bounds = get_types(self.cs, None)
        self.scen = Scenario({'run_obj': 'runtime', 'cutoff_time': 20, 'cs': self.cs,
                              'output_dir': ''})
Пример #9
0
    def import_data(self, data):
        """
        Import additional data for tuning.

        Parameters
        ----------
        data : list of dict
            Each of which has at least two keys, ``parameter`` and ``value``.
        """
        _completed_num = 0
        for trial_info in data:
            self.logger.info(
                "Importing data, current processing progress %s / %s",
                _completed_num, len(data))
            # simply validate data format
            assert "parameter" in trial_info
            _params = trial_info["parameter"]
            assert "value" in trial_info
            _value = trial_info['value']
            if not _value:
                self.logger.info(
                    "Useless trial data, value is %s, skip this trial data.",
                    _value)
                continue
            _value = extract_scalar_reward(_value)
            # convert the keys in loguniform and categorical types
            valid_entry = True
            for key, value in _params.items():
                if key in self.loguniform_key:
                    _params[key] = np.log(value)
                elif key in self.categorical_dict:
                    if value in self.categorical_dict[key]:
                        _params[key] = self.categorical_dict[key].index(value)
                    else:
                        self.logger.info(
                            "The value %s of key %s is not in search space.",
                            str(value), key)
                        valid_entry = False
                        break
            if not valid_entry:
                continue
            # start import this data entry
            _completed_num += 1
            config = Configuration(self.cs, values=_params)
            if self.optimize_mode is OptimizeMode.Maximize:
                _value = -_value
            if self.first_one:
                self.smbo_solver.nni_smac_receive_first_run(config, _value)
                self.first_one = False
            else:
                self.smbo_solver.nni_smac_receive_runs(config, _value)
        self.logger.info(
            "Successfully import data to smac tuner, total data: %d, imported data: %d.",
            len(data), _completed_num)
Пример #10
0
 def test_get_hyperparameters_topological_sort_simple(self):
     for iteration in range(10):
         cs = ConfigurationSpace()
         hp1 = CategoricalHyperparameter("parent", [0, 1])
         cs.add_hyperparameter(hp1)
         hp2 = UniformIntegerHyperparameter("child", 0, 10)
         cs.add_hyperparameter(hp2)
         cond1 = EqualsCondition(hp2, hp1, 0)
         cs.add_condition(cond1)
         # This automatically checks the configuration!
         Configuration(cs, dict(parent=0, child=5))
Пример #11
0
    def setUp(self):
        unittest.TestCase.setUp(self)

        self.rh = RunHistory(aggregate_func=average_cost)
        self.cs = get_config_space()
        self.config1 = Configuration(self.cs, values={'a': 0, 'b': 100})
        self.config2 = Configuration(self.cs, values={'a': 100, 'b': 0})
        self.config3 = Configuration(self.cs, values={'a': 100, 'b': 100})

        self.scen = Scenario({
            "cutoff_time": 2,
            'cs': self.cs,
            "run_obj": 'runtime',
            "output_dir": ''
        })
        self.stats = Stats(scenario=self.scen)
        self.stats.start_timing()

        self.logger = logging.getLogger(self.__module__ + "." +
                                        self.__class__.__name__)
Пример #12
0
    def test_sample_configuration(self):
        cs = ConfigurationSpace()
        hp1 = CategoricalHyperparameter("parent", [0, 1])
        cs.add_hyperparameter(hp1)
        hp2 = UniformIntegerHyperparameter("child", 0, 10)
        cs.add_hyperparameter(hp2)
        cond1 = EqualsCondition(hp2, hp1, 0)
        cs.add_condition(cond1)
        # This automatically checks the configuration!
        Configuration(cs, dict(parent=0, child=5))

        # and now for something more complicated
        cs = ConfigurationSpace(seed=1)
        hp1 = CategoricalHyperparameter("input1", [0, 1])
        cs.add_hyperparameter(hp1)
        hp2 = CategoricalHyperparameter("input2", [0, 1])
        cs.add_hyperparameter(hp2)
        hp3 = CategoricalHyperparameter("input3", [0, 1])
        cs.add_hyperparameter(hp3)
        hp4 = CategoricalHyperparameter("input4", [0, 1])
        cs.add_hyperparameter(hp4)
        hp5 = CategoricalHyperparameter("input5", [0, 1])
        cs.add_hyperparameter(hp5)
        hp6 = Constant("AND", "True")
        cs.add_hyperparameter(hp6)

        cond1 = EqualsCondition(hp6, hp1, 1)
        cond2 = NotEqualsCondition(hp6, hp2, 1)
        cond3 = InCondition(hp6, hp3, [1])
        cond4 = EqualsCondition(hp5, hp3, 1)
        cond5 = EqualsCondition(hp4, hp5, 1)
        cond6 = EqualsCondition(hp6, hp4, 1)
        cond7 = EqualsCondition(hp6, hp5, 1)

        conj1 = AndConjunction(cond1, cond2)
        conj2 = OrConjunction(conj1, cond3)
        conj3 = AndConjunction(conj2, cond6, cond7)
        cs.add_condition(cond4)
        cs.add_condition(cond5)
        cs.add_condition(conj3)

        samples = []
        for i in range(5):
            cs.seed(1)
            samples.append([])
            for j in range(100):
                sample = cs.sample_configuration()
                samples[-1].append(sample)

            if i > 0:
                for j in range(100):
                    self.assertEqual(samples[-1][j], samples[-2][j])
Пример #13
0
    def test_get_config_runs(self):
        '''
            get some config runs from runhistory
        '''

        rh = RunHistory(aggregate_func=average_cost)
        cs = get_config_space()
        config1 = Configuration(cs, values={'a': 1, 'b': 2})
        config2 = Configuration(cs, values={'a': 1, 'b': 3})
        rh.add(config=config1,
               cost=10,
               time=20,
               status=StatusType.SUCCESS,
               instance_id=1,
               seed=1)

        rh.add(config=config2,
               cost=10,
               time=20,
               status=StatusType.SUCCESS,
               instance_id=1,
               seed=1)

        rh.add(config=config1,
               cost=10,
               time=20,
               status=StatusType.SUCCESS,
               instance_id=2,
               seed=2)

        ist = rh.get_runs_for_config(config=config1)
        #print(ist)
        #print(ist[0])
        #print(ist[1])
        self.assertEqual(len(ist), 2)
        self.assertEqual(ist[0].instance, 1)
        self.assertEqual(ist[1].instance, 2)
Пример #14
0
 def test_init_with_values(self):
     c1 = Configuration(self.cs,
                        values={
                            'parent': 1,
                            'child': 2,
                            'friend': 3
                        })
     # Pay attention that the vector does not necessarily has an intuitive
     #  sorting!
     # Values are a little bit higher than one would expect because,
     # an integer range of [0,10] is transformed to [-0.499,10.499].
     vector_values = {
         'parent': 1,
         'child': 0.22727223140405708,
         'friend': 0.583333611112037
     }
     vector = [None] * 3
     for name in self.cs._hyperparameter_idx:
         vector[self.cs._hyperparameter_idx[name]] = vector_values[name]
     c2 = Configuration(self.cs, vector=vector)
     # This tests
     # a) that the vector representation of both are the same
     # b) that the dictionary representation of both are the same
     self.assertEqual(c1, c2)
Пример #15
0
    def test_full_update(self):
        rh = RunHistory(aggregate_func=average_cost)
        cs = get_config_space()
        config1 = Configuration(cs, values={'a': 1, 'b': 2})
        config2 = Configuration(cs, values={'a': 1, 'b': 3})
        rh.add(config=config1,
               cost=10,
               time=20,
               status=StatusType.SUCCESS,
               instance_id=1,
               seed=1)

        rh.add(config=config2,
               cost=10,
               time=20,
               status=StatusType.SUCCESS,
               instance_id=1,
               seed=1)

        rh.add(config=config2,
               cost=20,
               time=20,
               status=StatusType.SUCCESS,
               instance_id=2,
               seed=2)

        cost_config2 = rh.get_cost(config2)

        rh.compute_all_costs()
        updated_cost_config2 = rh.get_cost(config2)
        self.assertTrue(cost_config2 == updated_cost_config2)

        rh.compute_all_costs(instances=[2])
        updated_cost_config2 = rh.get_cost(config2)
        self.assertTrue(cost_config2 != updated_cost_config2)
        self.assertTrue(updated_cost_config2 == 20)
Пример #16
0
    def test_add_multiple_times(self):
        rh = RunHistory(aggregate_func=average_cost)
        cs = get_config_space()
        config = Configuration(cs, values={'a': 1, 'b': 2})

        for i in range(5):
            rh.add(config=config,
                   cost=i + 1,
                   time=i + 1,
                   status=StatusType.SUCCESS,
                   instance_id=None,
                   seed=12345,
                   additional_info=None)

        self.assertEqual(len(rh.data), 1)
        self.assertEqual(len(rh.get_runs_for_config(config)), 1)
        self.assertEqual(len(rh._configid_to_inst_seed[1]), 1)
        self.assertEqual(list(rh.data.values())[0].cost, 1)
Пример #17
0
    def test_incremental_update(self):

        rh = RunHistory(aggregate_func=average_cost)
        cs = get_config_space()
        config1 = Configuration(cs, values={'a': 1, 'b': 2})

        rh.add(config=config1,
               cost=10,
               time=20,
               status=StatusType.SUCCESS,
               instance_id=1,
               seed=1)

        self.assertTrue(rh.get_cost(config1) == 10)

        rh.add(config=config1,
               cost=20,
               time=20,
               status=StatusType.SUCCESS,
               instance_id=2,
               seed=1)

        self.assertTrue(rh.get_cost(config1) == 15)
Пример #18
0
    def test_add_and_pickle(self):
        '''
            simply adding some rundata to runhistory, then pickle it
        '''
        rh = RunHistory(aggregate_func=average_cost)
        cs = get_config_space()
        config = Configuration(cs, values={'a': 1, 'b': 2})

        self.assertTrue(rh.empty())

        rh.add(config=config,
               cost=10,
               time=20,
               status=StatusType.SUCCESS,
               instance_id=None,
               seed=None,
               additional_info=None)

        rh.add(config=config,
               cost=10,
               time=20,
               status=StatusType.SUCCESS,
               instance_id=1,
               seed=12354,
               additional_info={"start_time": 10})

        self.assertFalse(rh.empty())

        tmpfile = tempfile.NamedTemporaryFile(mode='wb', delete=False)
        pickle.dump(rh, tmpfile, -1)
        name = tmpfile.name
        tmpfile.close()

        with open(name, 'rb') as fh:
            loaded_rh = pickle.load(fh)
        self.assertEqual(loaded_rh.data, rh.data)
Пример #19
0
    def test_merge_foreign_data(self):
        ''' test smac.utils.merge_foreign_data '''

        scenario = Scenario(self.test_scenario_dict)
        scenario_2 = Scenario(self.test_scenario_dict)
        scenario_2.feature_dict = {"inst_new": [4]}

        # init cs
        cs = ConfigurationSpace()
        cs.add_hyperparameter(
            UniformIntegerHyperparameter(name='a', lower=0, upper=100))
        cs.add_hyperparameter(
            UniformIntegerHyperparameter(name='b', lower=0, upper=100))
        # build runhistory
        rh_merge = RunHistory(aggregate_func=average_cost)
        config = Configuration(cs, values={'a': 1, 'b': 2})

        rh_merge.add(config=config,
                     instance_id="inst_new",
                     cost=10,
                     time=20,
                     status=StatusType.SUCCESS,
                     seed=None,
                     additional_info=None)

        # "d" is an instance in <scenario>
        rh_merge.add(config=config,
                     instance_id="d",
                     cost=5,
                     time=20,
                     status=StatusType.SUCCESS,
                     seed=None,
                     additional_info=None)

        # build empty rh
        rh_base = RunHistory(aggregate_func=average_cost)

        merge_foreign_data(scenario=scenario,
                           runhistory=rh_base,
                           in_scenario_list=[scenario_2],
                           in_runhistory_list=[rh_merge])

        # both runs should be in the runhistory
        # but we should not use the data to update the cost of config
        self.assertTrue(len(rh_base.data) == 2)
        self.assertTrue(np.isnan(rh_base.get_cost(config)))

        # we should not get direct access to external run data
        runs = rh_base.get_runs_for_config(config)
        self.assertTrue(len(runs) == 0)

        rh_merge.add(config=config,
                     instance_id="inst_new_2",
                     cost=10,
                     time=20,
                     status=StatusType.SUCCESS,
                     seed=None,
                     additional_info=None)

        self.assertRaises(
            ValueError, merge_foreign_data, **{
                "scenario": scenario,
                "runhistory": rh_base,
                "in_scenario_list": [scenario_2],
                "in_runhistory_list": [rh_merge]
            })
Пример #20
0
def get_random_neighbor(configuration: Configuration, seed: int) -> Configuration:
    """Draw a random neighbor by changing one parameter of a configuration.

    * If the parameter is categorical, it changes it to another value.
    * If the parameter is ordinal, it changes it to the next higher or lower
      value.
    * If parameter is a float, draw a random sample

    If changing a parameter activates new parameters or deactivates
    previously active parameters, the configuration will be rejected. If more
    than 10000 configurations were rejected, this function raises a
    ValueError.

    Parameters
    ----------
    configuration : Configuration

    seed : int
        Used to generate a random state.

    Returns
    -------
    Configuration
        The new neighbor.

    """
    random = np.random.RandomState(seed)
    rejected = True
    values = copy.deepcopy(configuration.get_dictionary())

    while rejected:
        # First, choose an active hyperparameter
        active = False
        iteration = 0
        while not active:
            iteration += 1
            if configuration._num_hyperparameters > 1:
                rand_idx = random.randint(0,
                                          configuration._num_hyperparameters - 1)
            else:
                rand_idx = 0

            value = configuration.get_array()[rand_idx]
            if np.isfinite(value):
                active = True

                hp_name = configuration.configuration_space \
                    .get_hyperparameter_by_idx(rand_idx)
                hp = configuration.configuration_space.get_hyperparameter(hp_name)

                # Only choose if there is a possibility of finding a neigboor
                if not hp.has_neighbors():
                    active = False

            if iteration > 10000:
                raise ValueError('Probably caught in an infinite loop.')
        # Get a neighboor and adapt the rest of the configuration if necessary
        neighbor = hp.get_neighbors(value, random, number=1, transform=True)[0]
        previous_value = values[hp.name]
        values[hp.name] = neighbor

        try:
            new_configuration = Configuration(
                configuration.configuration_space, values=values)
            rejected = False
        except ValueError as e:
            values[hp.name] = previous_value

    return new_configuration
Пример #21
0
def get_one_exchange_neighbourhood(
        configuration: Configuration,
        seed: int,
        num_neighbors: int=4,
        stdev: float=0.2,
    ) -> Generator[Configuration, None, None]:
    """Return all configurations in a one-exchange neighborhood.

    The method is implemented as defined by:
    Frank Hutter, Holger H. Hoos and Kevin Leyton-Brown
    Sequential Model-Based Optimization for General Algorithm Configuration
    In: Proceedings of the conference on Learning and Intelligent OptimizatioN (LION 5)
    """
    random = np.random.RandomState(seed)
    hyperparameters_list = list(
        list(configuration.configuration_space._hyperparameters.keys())
    )
    hyperparameters_list_length = len(hyperparameters_list)
    hyperparameters_used = [hp.name for hp in configuration.configuration_space.get_hyperparameters()
                            if hp.get_num_neighbors(configuration.get(hp.name)) == 0 and configuration.get(hp.name) is not None]
    number_of_usable_hyperparameters = sum(np.isfinite(configuration.get_array()))
    n_neighbors_per_hp = {
        hp.name: num_neighbors if np.isinf(hp.get_num_neighbors(configuration.get(hp.name))) else hp.get_num_neighbors(configuration.get(hp.name))
        for hp in configuration.configuration_space.get_hyperparameters()
    }

    finite_neighbors_stack = {}  # type: Dict
    configuration_space = configuration.configuration_space  # type: ConfigSpaceNNI

    while len(hyperparameters_used) < number_of_usable_hyperparameters:
        index = int(random.randint(hyperparameters_list_length))
        hp_name = hyperparameters_list[index]
        if n_neighbors_per_hp[hp_name] == 0:
            continue

        else:
            neighbourhood = []
            number_of_sampled_neighbors = 0
            array = configuration.get_array()  # type: np.ndarray
            value = array[index]  # type: float

            # Check for NaNs (inactive value)
            if value != value:
                continue

            iteration = 0
            hp = configuration_space.get_hyperparameter(hp_name)  # type: Hyperparameter
            num_neighbors_for_hp = hp.get_num_neighbors(configuration.get(hp_name))
            while True:
                # Obtain neigbors differently for different possible numbers of
                # neighbors
                if num_neighbors_for_hp == 0:
                    break
                # No infinite loops
                elif iteration > 100:
                    break
                elif np.isinf(num_neighbors_for_hp):
                    if number_of_sampled_neighbors >= 1:
                        break
                    # TODO if code becomes slow remove the isinstance!
                    if isinstance(hp, (UniformFloatHyperparameter, UniformIntegerHyperparameter)):
                        neighbor = hp.get_neighbors(value, random,
                                                    number=1, std=stdev)[0]
                    else:
                        neighbor = hp.get_neighbors(value, random,
                                                    number=1)[0]
                else:
                    if iteration > 0:
                        break
                    if hp_name not in finite_neighbors_stack:
                        neighbors = hp.get_neighbors(value, random)
                        random.shuffle(neighbors)
                        finite_neighbors_stack[hp_name] = neighbors
                    else:
                        neighbors = finite_neighbors_stack[hp_name]
                    neighbor = neighbors.pop()

                # Check all newly obtained neigbors
                new_array = array.copy()
                new_array = ConfigSpaceNNI.c_util.change_hp_value(
                    configuration_space=configuration_space,
                    configuration_array=new_array,
                    hp_name=hp_name,
                    hp_value=neighbor,
                    index=index)
                try:
                    # Populating a configuration from an array does not check
                    #  if it is a legal configuration - check this (slow)
                    new_configuration = Configuration(configuration_space,
                                                      vector=new_array)  # type: Configuration
                    # Only rigorously check every tenth configuration (
                    # because moving around in the neighborhood should
                    # just work!)
                    if np.random.random() > 0.95:
                        new_configuration.is_valid_configuration()
                    else:
                        configuration_space._check_forbidden(new_array)
                    neighbourhood.append(new_configuration)
                except ForbiddenValueError as e:
                    pass

                iteration += 1
                if len(neighbourhood) > 0:
                    number_of_sampled_neighbors += 1

            # Some infinite loop happened and no valid neighbor was found OR
            # no valid neighbor is available for a categorical
            if len(neighbourhood) == 0:
                hyperparameters_used.append(hp_name)
                n_neighbors_per_hp[hp_name] = 0
                hyperparameters_used.append(hp_name)
            else:
                if hp_name not in hyperparameters_used:
                    n_ = neighbourhood.pop()
                    n_neighbors_per_hp[hp_name] -= 1
                    if n_neighbors_per_hp[hp_name] == 0:
                        hyperparameters_used.append(hp_name)
                    yield n_
Пример #22
0
    def test_check_configuration(self):
        # TODO this is only a smoke test
        # TODO actually, this rather tests the evaluate methods in the
        # conditions module!
        cs = ConfigurationSpace()
        hp1 = CategoricalHyperparameter("parent", [0, 1])
        cs.add_hyperparameter(hp1)
        hp2 = UniformIntegerHyperparameter("child", 0, 10)
        cs.add_hyperparameter(hp2)
        cond1 = EqualsCondition(hp2, hp1, 0)
        cs.add_condition(cond1)
        # This automatically checks the configuration!
        Configuration(cs, dict(parent=0, child=5))

        # and now for something more complicated
        cs = ConfigurationSpace()
        hp1 = CategoricalHyperparameter("input1", [0, 1])
        cs.add_hyperparameter(hp1)
        hp2 = CategoricalHyperparameter("input2", [0, 1])
        cs.add_hyperparameter(hp2)
        hp3 = CategoricalHyperparameter("input3", [0, 1])
        cs.add_hyperparameter(hp3)
        hp4 = CategoricalHyperparameter("input4", [0, 1])
        cs.add_hyperparameter(hp4)
        hp5 = CategoricalHyperparameter("input5", [0, 1])
        cs.add_hyperparameter(hp5)
        hp6 = Constant("AND", "True")
        cs.add_hyperparameter(hp6)

        cond1 = EqualsCondition(hp6, hp1, 1)
        cond2 = NotEqualsCondition(hp6, hp2, 1)
        cond3 = InCondition(hp6, hp3, [1])
        cond4 = EqualsCondition(hp6, hp4, 1)
        cond5 = EqualsCondition(hp6, hp5, 1)

        conj1 = AndConjunction(cond1, cond2)
        conj2 = OrConjunction(conj1, cond3)
        conj3 = AndConjunction(conj2, cond4, cond5)
        cs.add_condition(conj3)

        expected_outcomes = [
            False, False, False, False, False, False, False, True, False,
            False, False, False, False, False, False, True, False, False,
            False, True, False, False, False, True, False, False, False, False,
            False, False, False, True
        ]

        for idx, values in enumerate(product([0, 1], repeat=5)):
            # The hyperparameters aren't sorted, but the test assumes them to
            #  be sorted.
            hyperparameters = sorted(cs.get_hyperparameters(),
                                     key=lambda t: t.name)
            instantiations = {
                hyperparameters[jdx + 1].name: values[jdx]
                for jdx in range(len(values))
            }

            evaluation = conj3.evaluate(instantiations)
            self.assertEqual(expected_outcomes[idx], evaluation)

            if evaluation == False:
                self.assertRaisesRegexp(
                    ValueError, "Inactive hyperparameter 'AND' must "
                    "not be specified, but has the vector value: "
                    "'0.0'.",
                    Configuration,
                    cs,
                    values={
                        "input1": values[0],
                        "input2": values[1],
                        "input3": values[2],
                        "input4": values[3],
                        "input5": values[4],
                        "AND": "True"
                    })
            else:
                Configuration(cs,
                              values={
                                  "input1": values[0],
                                  "input2": values[1],
                                  "input3": values[2],
                                  "input4": values[3],
                                  "input5": values[4],
                                  "AND": "True"
                              })