def create_regressor(rng=np.random, batchsize=1, window=240, input=1, dropout=0.25): print('inside create_regressor') return Network( #DropoutLayer(amount=dropout, rng=rng), Conv1DLayer(filter_shape=(64, input, 45), input_shape=(batchsize, input, window), rng=rng), BiasLayer(shape=(64, 1)), ActivationLayer(), #DropoutLayer(amount=dropout, rng=rng), Conv1DLayer(filter_shape=(128, 64, 25), input_shape=(batchsize, 64, window), rng=rng), BiasLayer(shape=(128, 1)), ActivationLayer(), #DropoutLayer(amount=dropout, rng=rng), Conv1DLayer(filter_shape=(256, 128, 15), input_shape=(batchsize, 128, window), rng=rng), BiasLayer(shape=(256, 1)), ActivationLayer(), Pool1DLayer(input_shape=(batchsize, 256, window)))
def create_footstepper(rng=np.random, batchsize=1, window=250, dropout=0.25): return Network( DropoutLayer(amount=dropout, rng=rng), Conv1DLayer(filter_shape=(64, 3, 65), input_shape=(batchsize, 3, window), rng=rng), BiasLayer(shape=(64, 1)), ActivationLayer(), DropoutLayer(amount=dropout, rng=rng), Conv1DLayer(filter_shape=(5, 64, 45), input_shape=(batchsize, 64, window), rng=rng), BiasLayer(shape=(5, 1)), )
def createcore_rightleg(rng=np.random, batchsize=1, window=240, dropout=0.25, depooler='random'): return Network( Network( DropoutLayer(amount=dropout, rng=rng), Conv1DLayer(filter_shape=(256, 12, 25), input_shape=(batchsize, 12, window), rng=rng), BiasLayer(shape=(256, 1)), ActivationLayer(), Pool1DLayer(input_shape=(batchsize, 256, window)), ), Network( Depool1DLayer(output_shape=(batchsize, 256, window), depooler='random', rng=rng), DropoutLayer(amount=dropout, rng=rng), Conv1DLayer(filter_shape=(12, 256, 25), input_shape=(batchsize, 256, window), rng=rng), BiasLayer(shape=(12, 1))))
def create_core(rng=np.random, batchsize=1, window=240, dropout=0.25, depooler='random'): print('inside create_core') return Network( Network( DropoutLayer(amount=dropout, rng=rng), Conv1DLayer(filter_shape=(256, 73, 25), input_shape=(batchsize, 73, window), rng=rng), BiasLayer(shape=(256, 1)), ActivationLayer(), Pool1DLayer(input_shape=(batchsize, 256, window)), ), Network( Depool1DLayer(output_shape=(batchsize, 256, window), depooler='random', rng=rng), DropoutLayer(amount=dropout, rng=rng), Conv1DLayer(filter_shape=(73, 256, 25), input_shape=(batchsize, 256, window), rng=rng), BiasLayer(shape=(73, 1))))