Пример #1
0
def create_regressor(rng=np.random,
                     batchsize=1,
                     window=240,
                     input=1,
                     dropout=0.25):

    print('inside create_regressor')
    return Network(
        #DropoutLayer(amount=dropout, rng=rng),
        Conv1DLayer(filter_shape=(64, input, 45),
                    input_shape=(batchsize, input, window),
                    rng=rng),
        BiasLayer(shape=(64, 1)),
        ActivationLayer(),

        #DropoutLayer(amount=dropout, rng=rng),
        Conv1DLayer(filter_shape=(128, 64, 25),
                    input_shape=(batchsize, 64, window),
                    rng=rng),
        BiasLayer(shape=(128, 1)),
        ActivationLayer(),

        #DropoutLayer(amount=dropout, rng=rng),
        Conv1DLayer(filter_shape=(256, 128, 15),
                    input_shape=(batchsize, 128, window),
                    rng=rng),
        BiasLayer(shape=(256, 1)),
        ActivationLayer(),
        Pool1DLayer(input_shape=(batchsize, 256, window)))
Пример #2
0
def create_footstepper(rng=np.random, batchsize=1, window=250, dropout=0.25):

    return Network(
        DropoutLayer(amount=dropout, rng=rng),
        Conv1DLayer(filter_shape=(64, 3, 65),
                    input_shape=(batchsize, 3, window),
                    rng=rng),
        BiasLayer(shape=(64, 1)),
        ActivationLayer(),
        DropoutLayer(amount=dropout, rng=rng),
        Conv1DLayer(filter_shape=(5, 64, 45),
                    input_shape=(batchsize, 64, window),
                    rng=rng),
        BiasLayer(shape=(5, 1)),
    )
Пример #3
0
def createcore_rightleg(rng=np.random,
                        batchsize=1,
                        window=240,
                        dropout=0.25,
                        depooler='random'):

    return Network(
        Network(
            DropoutLayer(amount=dropout, rng=rng),
            Conv1DLayer(filter_shape=(256, 12, 25),
                        input_shape=(batchsize, 12, window),
                        rng=rng),
            BiasLayer(shape=(256, 1)),
            ActivationLayer(),
            Pool1DLayer(input_shape=(batchsize, 256, window)),
        ),
        Network(
            Depool1DLayer(output_shape=(batchsize, 256, window),
                          depooler='random',
                          rng=rng), DropoutLayer(amount=dropout, rng=rng),
            Conv1DLayer(filter_shape=(12, 256, 25),
                        input_shape=(batchsize, 256, window),
                        rng=rng), BiasLayer(shape=(12, 1))))
Пример #4
0
def create_core(rng=np.random,
                batchsize=1,
                window=240,
                dropout=0.25,
                depooler='random'):
    print('inside create_core')
    return Network(
        Network(
            DropoutLayer(amount=dropout, rng=rng),
            Conv1DLayer(filter_shape=(256, 73, 25),
                        input_shape=(batchsize, 73, window),
                        rng=rng),
            BiasLayer(shape=(256, 1)),
            ActivationLayer(),
            Pool1DLayer(input_shape=(batchsize, 256, window)),
        ),
        Network(
            Depool1DLayer(output_shape=(batchsize, 256, window),
                          depooler='random',
                          rng=rng), DropoutLayer(amount=dropout, rng=rng),
            Conv1DLayer(filter_shape=(73, 256, 25),
                        input_shape=(batchsize, 256, window),
                        rng=rng), BiasLayer(shape=(73, 1))))