Пример #1
0
    def __init__(self, pose : Pose, additional_data : Dict, in_pyrender_coords : bool, distance_scale : float = distance_scale_px):
        if in_pyrender_coords:
            self.pose_pyrender = pose
            self.pose_cv = pose.get_converted_between_cv_and_pyrender_coords()
        else:
            self.pose_cv = pose
            self.pose_pyrender = pose.get_converted_between_cv_and_pyrender_coords()
        self.additional_data = additional_data
        self.distance_scale = distance_scale
        self.comparison_points_cv = None
        self.comparison_camera_matrix = None
        self.comparison_distortion_coefficients = None
        self.projected_points = None
        self.comparison_projected_distances = None
        self.comparison_soft_l1_distances = None
        self.comparison_cauchy_distances = None
        self.comparison_arctan_distances = None
        self.assignment_score_function = None
        self.assignment_scores = None
        self.comparison_indices = None
        self.projected_indices = None
        self.matched_scores = None
        self.matched_scores_rms = None

        self.calculate_inliers_within_bounding_box = False
Пример #2
0
def _get_die_pose_from_projected(bounding_box_cv : np.ndarray, dot_centers_cv : np.ndarray, local_dots_to_project : np.ndarray, approximate_pose_result : PoseResult, camera_matrix : np.ndarray, distortion_coefficients : np.ndarray) -> PoseResult:
    """Determines a die's pose that matches projection of local dots to found dot_centers_cv to solve Perspective-n-Point problem. Uses an approximate pose result as initial guess."""
    #Note that we need a candidate pose to start performing matching, since are knows are model points (in 3D) and image-space dot locations (in 2D).
    #Therefore, we must either project the model points onto the image to 2D (given a candidate pose), or reproject the dot locations back to 3D (again, given a candidate pose).
    #Since the former might yield some model-space dots incorrectly omitted (since they face away from camera in candidate pose), the 3D matching problem gives more flexibility.
    #However, without knowing the dot size (image, and model space) there's no way to determine each dot's z-distance from the camera, so we'd need a projective matching/registration algorithm, which would supercede doing something like PNP.

    if approximate_pose_result.comparison_indices is not None and approximate_pose_result.projected_indices is not None:
        projected_indices = approximate_pose_result.projected_indices
        found_indices = approximate_pose_result.comparison_indices
        additional_data = {}
        #Note that poorer matches here will be handled with Ransac/outlier exclusion below.
    else:
        projected_indices, found_indices, additional_data = _match_points_with_point_cloud_registration(dot_centers_cv, local_dots_to_project, approximate_pose_result, camera_matrix, distortion_coefficients)

    local_dots_for_pnp_masked = local_dots_to_project[projected_indices, :]
    dot_centers_cv_masked = dot_centers_cv[found_indices, :]

    extrinsic_rvec = approximate_pose_result.pose_cv.rotation_rodrigues.copy()
    extrinsic_tvec = approximate_pose_result.pose_cv.translation.copy()

    num_dots_min = len(found_indices)
    inlier_distance = inlier_cutoff_px
    perform_iterative = False
    #NB It seems SolvePNP may not work for < 4 points, even in Iterative/useExtrinsicGuess case it claims to handle, and correspondingly the RANSAC version needs at least one more point to be meaningful.
    if num_dots_min >= 5:
        pnp_flags = cv2.SOLVEPNP_ITERATIVE
        matched_pnp = cv2.solvePnPRansac(local_dots_for_pnp_masked, dot_centers_cv_masked, camera_matrix, distortion_coefficients, reprojectionError = inlier_distance, rvec = extrinsic_rvec, tvec = extrinsic_tvec, useExtrinsicGuess = True, flags = pnp_flags)
        pose_cv = Pose.create_from_cv_results(matched_pnp)
        if pose_cv:
            pose_result = PoseResult(pose_cv, additional_data, in_pyrender_coords = False)
        else:
            perform_iterative = True
    elif num_dots_min == 4:
        four_dot_pnp_flags = cv2.SOLVEPNP_AP3P
        four_dot_pnp = cv2.solvePnP(local_dots_for_pnp_masked, dot_centers_cv_masked, camera_matrix, distortion_coefficients, flags = four_dot_pnp_flags)
        four_dot_pnp_pose_cv = Pose.create_from_cv_results(four_dot_pnp)
        if four_dot_pnp_pose_cv:
            pose_result = PoseResult(four_dot_pnp_pose_cv, additional_data, in_pyrender_coords = False)
            pose_result.calculate_comparison(dot_centers_cv_masked, camera_matrix, distortion_coefficients)
            pose_result_distances = pose_result.comparison_projected_distances[pose_result.comparison_indices, pose_result.projected_indices]
            all_distances_inliers = np.all(pose_result_distances < inlier_distance)
            perform_iterative = not all_distances_inliers
        else:
            perform_iterative = True
    else:
        perform_iterative = True

    if perform_iterative:
        iterative_pose_result = _get_die_pose_iterative(bounding_box_cv, dot_centers_cv, approximate_pose_result, camera_matrix, distortion_coefficients, get_reprojection_error_sum_assignment_arctan)
        pose_result = iterative_pose_result
    
    return pose_result
Пример #3
0
def _get_local_dots_projected(trial_pose_cv : Pose, camera_matrix : np.ndarray, distortion_coefficients : np.ndarray):
    """Gets the projected visible dot positions of a die given its pose and camera information."""
    local_dots_facing_pyrender = get_local_dots_facing_camera_from_eye_space_pose(trial_pose_cv.get_converted_between_cv_and_pyrender_coords())
    local_dots_to_project = local_dots_facing_pyrender
    local_dots_projected, local_dots_projected_jacobian = cv2.projectPoints(local_dots_to_project, trial_pose_cv.rotation_rodrigues, trial_pose_cv.translation, camera_matrix, distortion_coefficients)
    local_dots_projected = np.squeeze(local_dots_projected, axis = 1)
    return local_dots_projected
Пример #4
0
def get_dots_mask_facing_camera_from_eye_space_pose(die_eye_space_pose : Pose):
    """Gets a true-false mask of which dots face the camera, given the die's eye-space pose."""
    dice_transform = die_eye_space_pose.as_transformation_matrix()
    dot_points = DiceConfig.get_local_dot_positions()
    dot_normals = DiceConfig.get_local_dot_normals()
    dot_points_transformed =  transform_points_3d(dot_points, dice_transform, at_infinity=False)
    dot_normals_transformed =  transform_points_3d(dot_normals, dice_transform, at_infinity=True)
    dots_are_visible = get_are_eye_space_point_normals_facing_camera(dot_points_transformed, dot_normals_transformed)
    return dots_are_visible
Пример #5
0
def _get_die_pose_iterative(bounding_box_cv : np.ndarray, dot_centers_cv : np.ndarray, approximate_pose_result : PoseResult, camera_matrix : np.ndarray, distortion_coefficients : np.ndarray, reprojection_error_function) -> PoseResult:
    """Gets a die pose iteratively given a reprojection error function, initial pose estimate, camera information, bounding box and found dot positions dot_centers_cv."""
    def get_reprojection_error(trial_pose_rodrigues_translation_cv):
        trial_pose_rodrigues_cv = trial_pose_rodrigues_translation_cv[0:3]
        trial_pose_translation_cv = trial_pose_rodrigues_translation_cv[3:]
        trial_pose_cv = Pose(True, trial_pose_rodrigues_cv, trial_pose_translation_cv)
        reproj_error = reprojection_error_function(bounding_box_cv, dot_centers_cv, trial_pose_cv, camera_matrix, distortion_coefficients)
        return reproj_error

    from scipy.optimize import minimize
    initial_guess = approximate_pose_result.pose_cv.as_numpy_array()
    minimization_results = minimize(get_reprojection_error, initial_guess, method = 'Nelder-Mead')#NB Nelder-Mead may not be the most efficient method, but a gradient-free method seems best to handle this particular cost function.
    minimized_pose = Pose.create_from_numpy_array(minimization_results.x)
    return PoseResult(minimized_pose, {}, in_pyrender_coords = False)
Пример #6
0
def _get_die_image_bounding_box_pose(bounding_box, camera_matrix : np.ndarray, distortion_coefficients : np.ndarray) -> PoseResult:
    """Get an approximate pose (particularly for translation) by solving PNP problem of the corners of an image-space bounding box."""
    box_size = tf.gather(bounding_box, [2, 3], axis = -1) - tf.gather(bounding_box, [0, 1], axis = -1)
    max_box_dimension = tf.math.reduce_max(tf.math.abs(box_size))
    dice_local_bb_min_max_abs = tf.math.abs(DiceConfig.get_local_bounding_box_min_max())
    dice_local_bb_extent = tf.math.reduce_max(dice_local_bb_min_max_abs)
    dice_local_bb_extent = tf.cast(dice_local_bb_extent, tf.float32)

    #NB Since distance between dots on face 2 is actually slightly greater than to neighbouring dots on other faces, we can't simply cluster based on dot-to-dot distance within each face.

    quad_scaling_factor = 1.2#Fitting a slightly larger quad than the dice extent will tend to give more accurate distance results when fitting a quad to the image bounding box.
    quad_with_dice_size = (np.array([[-1, -1, 0],[-1, 1, 0], [1, -1, 0], [1, 1, 0]]) * quad_scaling_factor * dice_local_bb_extent.numpy()).astype(np.float32)
    bounding_box_corners = tf.stack([tf.gather(bounding_box, [0, 1], axis = -1), tf.gather(bounding_box, [2, 1], axis = -1), tf.gather(bounding_box, [0, 3], axis = -1), tf.gather(bounding_box, [2, 3], axis = -1)], axis = -1)
    bounding_box_points = _convert_tensorflow_points_to_opencv(bounding_box_corners, transpose = True)
    quad_pnp_results = cv2.solvePnP(quad_with_dice_size, bounding_box_points, camera_matrix, distortion_coefficients)
    quad_pnp_pose_cv = Pose.create_from_cv_results(quad_pnp_results)
    quad_pnp_pose_results = PoseResult(quad_pnp_pose_cv, {}, in_pyrender_coords = False)
    return quad_pnp_pose_results
Пример #7
0
def _get_approximate_die_pose(die_class : int, y_angle_deg : float, bounding_box_pose_result : PoseResult, x_axis_rotations_deg : Sequence[float], y_rot_offsets_deg : Sequence[float]) -> PoseResult:
    """Gets an approximate pose given the die class, rotation around vertical axes, and a rough pose result estimated from the bounding box.
    Checks the given set of rotation offsets rotations around x and y axes."""
    bb_pnp_res, bb_rotation, bb_translation = bounding_box_pose_result.pose_cv
    if bb_pnp_res:
        from scipy.spatial.transform import Rotation

        bb_translation_pyrender_coords = bb_translation * np.array([1, -1, -1])[:,np.newaxis]
        angle_of_translation_deg = np.rad2deg(np.arctan2(-bb_translation_pyrender_coords[0], -bb_translation_pyrender_coords[2]))
        y_angle_deg_with_position_offset = y_angle_deg + angle_of_translation_deg

        pose_results = []
        die_local_up_axis, die_local_forward_axis, die_local_right_axis = _get_die_local_up_forward_right_axes(die_class)
        for y_rot_offset_deg in y_rot_offsets_deg:
            y_angle_final = y_angle_deg_with_position_offset + y_rot_offset_deg
            angle_cos = np.cos(np.deg2rad(y_angle_final))
            angle_sin = np.sin(np.deg2rad(y_angle_final))
            die_local_to_scene_rotation = np.eye(3)
            die_local_to_scene_rotation[0, 0:3] = angle_cos * die_local_right_axis + angle_sin * die_local_forward_axis
            die_local_to_scene_rotation[1, 0:3] = die_local_up_axis 
            die_local_to_scene_rotation[2, 0:3] = - angle_sin * die_local_right_axis + angle_cos * die_local_forward_axis

            for x_axis_rotation_deg in x_axis_rotations_deg:
                x_axis_rotation = Rotation.from_euler('x', x_axis_rotation_deg, degrees = True)
                x_axis_rotation_matrix = x_axis_rotation.as_matrix()
                die_combined_rotation = x_axis_rotation_matrix @ die_local_to_scene_rotation

                die_rotation_rodrigues, die_rotation_rodrigues_jacobian = cv2.Rodrigues(die_combined_rotation)
                #NB Return in 'pyrender' coordinates
                approx_pose = Pose(True, die_rotation_rodrigues, bb_translation_pyrender_coords)
                pose_result = PoseResult(approx_pose, {}, in_pyrender_coords = True)
                pose_result.y_angle = y_angle_final
                pose_result.y_angle_rel = y_angle_deg + y_rot_offset_deg
                pose_result.x_angle = x_axis_rotation_deg
                pose_results.append(pose_result)
        return pose_results
    else:
        raise NotImplementedError("Cannot get approximate die pose if bounding box PNP was not found.")
Пример #8
0
 def get_reprojection_error(trial_pose_rodrigues_translation_cv):
     trial_pose_rodrigues_cv = trial_pose_rodrigues_translation_cv[0:3]
     trial_pose_translation_cv = trial_pose_rodrigues_translation_cv[3:]
     trial_pose_cv = Pose(True, trial_pose_rodrigues_cv, trial_pose_translation_cv)
     reproj_error = reprojection_error_function(bounding_box_cv, dot_centers_cv, trial_pose_cv, camera_matrix, distortion_coefficients)
     return reproj_error