Пример #1
0
    return cross_entropy


model = VGG19(3)
# model  =ResNet50(3)
opt = keras.optimizers.Adam(learning_rate=0.0001)

# opt = keras.optimizers.SGD(learning_rate=1,momentum=0.001)
model.compile(optimizer=opt,
              loss="categorical_crossentropy",
              metrics='accuracy')
# model.compile(optimizer =opt, loss=weighted_categorical_crossentropy, metrics='accuracy')

model.summary()

dt = DataLoader()
X_Data, Y_Data = dt.LoadTrainingData(
    "D:\Sergey\FluorocodeMain\FluorocodeMain\DataForTraining.npz")
x_v, y_v = dt.LoadTrainingData(
    "D:\Sergey\FluorocodeMain\FluorocodeMain\DataForValidation.npz")

history = model.fit(X_Data,
                    Y_Data,
                    batch_size=4,
                    shuffle=True,
                    epochs=100,
                    validation_data=(x_v, y_v))

plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])
plt.title('Model accuracy')
Пример #2
0
# opt = keras.optimizers.Adam(learning_rate=0.001)

opt = keras.optimizers.SGD(learning_rate=0.003, momentum=0.01)
model.compile(optimizer=opt,
              loss="categorical_crossentropy",
              metrics='accuracy')

model.summary()

mcp_save = keras.callbacks.ModelCheckpoint(
    'mdl_wts_step_fullgenomeStep2-Extra.hdf5',
    save_best_only=True,
    monitor='val_accuracy',
    mode='max')

dt = DataLoader()
# X_Data ,Y_Data  = dt.LoadTrainingData("D:\Sergey\FluorocodeMain\FluorocodeMain\DataForTraining1D.npz")
x_v, y_v = dt.LoadTrainingData(
    "D:\Sergey\FluorocodeMain\FluorocodeMain\DataForValidation1D.npz")

history = model.fit(x_v,
                    y_v,
                    batch_size=8,
                    epochs=15,
                    validation_data=(x_v, y_v),
                    callbacks=[mcp_save, RealDataEval(x_v, y_v)])

plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])
plt.title('Model accuracy')
plt.ylabel('Accuracy')
Пример #3
0
pixelsz = 39.68
ResEnhancement = 2
# genomes = ['Other','CP014051','CP039296','CP000948']
# genomes = ['NC_000913.3','Other','CP014051','CP014787']
genomes = ['NC_000913.3', 'CP014051', 'CP014787', 'NZ_CP009467.1']

# genomes = ['CP014787']
# genomes = ['CP000948']
# genomes = ['CP014051','CP039296', 'CP009467.1','CP014787','CP000948']

AllLabels = []
AllProfiles = []
numsamples = 5000

Dt = DataConverter()
Ds = DataLoader()

for genome in genomes:
    EffLabeledTraces = []
    SIMTRC = SIMTraces.TSIMTraces(genome, 1.66, 0.34, 0, 'TaqI', pixelsz)
    Gauss = Misc.GetGauss1d(
        size, Misc.FWHMtoSigma(Misc.GetFWHM(Wavelength, NA, ResEnhancement)),
        pixelsz)

    if genome != 'Other':

        Profiles = []
        ReCuts = SIMTRC.GetTraceRestrictions()
        ReCutsInPx = SIMTRC.GetDyeLocationsInPixel(ReCuts)
        R = RTG.RandomTraceGenerator(Misc.kbToPx(100000, SIMTRC),
                                     Misc.kbToPx(20000, SIMTRC), numsamples)
Пример #4
0
"""
import Core.Misc as Misc
import Core.SIMTraces as SIMTraces
import Core.RandomTraceGenerator as RTG
import numpy as np
from ImGen.ImGen import TrainImageGenerator
from Core.DataHandler import DataConverter
from Core.DataHandler import DataLoader

genomes = ['CP014787', 'CP000948']

ImagesForAllGenomes = []
LabelsForAllGenomes = []

Dt = DataConverter()
Ds = DataLoader()
for genome in genomes:
    SIMTRC = SIMTraces.TSIMTraces(genome, 1.75, 0.34, 0, 'TaqI', 80)

    ReCuts = SIMTRC.GetTraceRestrictions()
    ReCutsInPx = SIMTRC.GetDyeLocationsInPixel(ReCuts)

    ReCutsInPx = ReCutsInPx[1:7000]
    R = RTG.RandomTraceGenerator(Misc.kbToPx(40000, SIMTRC),
                                 Misc.kbToPx(5000, SIMTRC), 16 * 4000)
    Traces = R.stratsample(np.asarray(ReCutsInPx))

    EffLabeledTraces = R.GetEffLabelingRate(Traces, 0.85)

    IMGEN = TrainImageGenerator('D:\Sergey\TrainDirectory', 800, 16, 256, 510,
                                1.4, SIMTRC.PixelSize)