Пример #1
0
    def plotMerged(self,
                   matrix,
                   expcol,
                   expdata=None,
                   title='',
                   showtable=True,
                   ax=None,
                   name=None,
                   stats=True):
        """Merge a set of exp vals with predictions and plot"""
        if expdata == None:
            expdata = self.parent.tablemodel.simpleCopy(include=['Mutations'])
        merged = self.mergeMatrix(matrix, expdata)
        x, y, names, muts = merged.getColumns(
            ['Total', expcol, 'name', 'Mutations'], allowempty=False)
        from Correlation import CorrelationAnalyser
        C = CorrelationAnalyser()
        muts = ['mutation: ' + i for i in muts]
        labels = zip(names, muts)
        ax, frame, mh = C.plotCorrelation(x,
                                          y,
                                          labels,
                                          title=title,
                                          ylabel=expcol,
                                          ax=ax,
                                          plotname=name,
                                          stats=stats,
                                          err=4)
        x = [round(float(i), 2) for i in x]
        y = [round(float(i), 2) for i in y]
        if showtable == True:
            table = self.showTable(frame, merged)
            mh.table = table

        return ax, mh, x, y
Пример #2
0
    def showAllResults(self):
        """Show results for single or multiple jobs together"""

        names = self.jobstable.get_selectedRecordNames()
        if len(names) == 1:
            ax, mh, x, y = self.showResults()

        else:
            tx = []
            ty = []
            import pylab as plt
            f = plt.figure(figsize=(8, 8))
            ax = f.add_subplot(111)
            for n in names:
                a, mh, x, y = self.showResults(n,
                                               showtable=False,
                                               ax=ax,
                                               stats=False)
                tx.extend(x)
                ty.extend(y)
            ax.legend()
            #add stats for summary
            from Correlation import CorrelationAnalyser
            C = CorrelationAnalyser()
            C.addStats(ax, tx, ty)
            f.show()

        return
Пример #3
0
 def plotMerged(self, matrix, expcol, expdata=None,
                 title='', showtable=True, ax=None, name=None,
                 stats=True):
     """Merge a set of exp vals with predictions and plot"""
     if expdata==None:
         expdata = self.parent.tablemodel.simpleCopy(include=['Mutations'])
     merged = self.mergeMatrix(matrix, expdata)
     x,y,names,muts = merged.getColumns(['Total',expcol,'name','Mutations'],allowempty=False)
     from Correlation import CorrelationAnalyser
     C = CorrelationAnalyser()
     muts = ['mutation: '+i for i in muts]
     labels = zip(names, muts)
     ax,frame,mh = C.plotCorrelation(x,y,labels,title=title,ylabel=expcol,
                                     ax=ax,plotname=name,stats=stats,err=4)
     x=[round(float(i),2) for i in x]
     y=[round(float(i),2) for i in y]       
     if showtable == True:
         table = self.showTable(frame, merged)
         mh.table = table
         
     return ax,mh,x,y
Пример #4
0
    def showAllResults(self):
        """Show results for single or multiple jobs together"""
        
        names = self.jobstable.get_selectedRecordNames()
        if len(names)==1:
            ax,mh,x,y=self.showResults()

        else:
            tx=[]; ty=[]
            import pylab as plt
            f=plt.figure(figsize=(8,8))
            ax=f.add_subplot(111)
            for n in names:
                a,mh,x,y = self.showResults(n,showtable=False, ax=ax,stats=False)
                tx.extend(x)
                ty.extend(y)                
            ax.legend()
            #add stats for summary
            from Correlation import CorrelationAnalyser
            C = CorrelationAnalyser()           
            C.addStats(ax,tx,ty)
            f.show()
            
        return