def test_compare_sklearn_mod_0(): X, y = data_gen(nrows = 99) function_scores = cross_validation(lm(), X = X, y = y, shuffle = False) sklearn_scores = cross_val_score(lm(), X = X, y = y, cv = 3) assert max(function_scores - sklearn_scores) < 0.000001, "results doesn't match sklearn"
def test_y_one_column(): X, y = data_gen() y = X with pytest.raises(TypeError): cross_validation(lm(), X=X, y=y)
def test_X_y_Nrows(): X, y = data_gen(nrows = 2) with pytest.raises(TypeError): cross_validation(lm(), X=X, y=y)
def test_random_state_range(): X, y = data_gen() with pytest.raises(TypeError): cross_validation(lm, X=X, y=y, random_state=-10)
def test_X_y_match(): X, y = data_gen() y = y[0:90] with pytest.raises(TypeError): cross_validation(lm(), X=X, y=y)
def test_model_linear_regression(): X, y = data_gen() with pytest.raises(TypeError): cross_validation("LINEAR MODEL", X = X, y = y, random_state = 10)
def test_k_range(): X, y = data_gen(nrows = 5) with pytest.raises(TypeError): cross_validation(lm(), X=X, y=y, k = 1) with pytest.raises(TypeError): cross_validation(lm(), X=X, y=y, k = 40)
def test_random_state_as_number(): X, y = data_gen() with pytest.raises(TypeError): cross_validation(lm(), X = X, y = y, random_state = '10')
def test_shuffle_as_boolean(): X, y = data_gen() with pytest.raises(TypeError): cross_validation(lm(), X = X, y = y, shuffle = '1') with pytest.raises(TypeError): cross_validation(lm(), X=X, y=y, shuffle=1.0)
def test_k_as_number(): X, y = data_gen() with pytest.raises(TypeError): cross_validation(lm(), X = X, y = y, k = '3')
def test_y_as_dataframe(): X, y = data_gen() with pytest.raises(TypeError): train_test_split(lm(), X = X, y = "y")
def test_X_as_dataframe(): X, y = data_gen() with pytest.raises(TypeError): cross_validation(lm(), X = "X", y = y)