def applyPredThresh(pixels): # zero removal for quantile computation nonzp = pixels[np.any(pixels, 1)] counts = {c:np.bincount(nonzp[:,c], minlength=256) for c in colors} qs = {c : countQuantiles(counts[c], iles) for c in colors} # clunky: qDict = {"R8D": qs[R][0], "R9D": qs[R][1], "G8D": qs[G][0], "G9D": qs[G][1], "B8D": qs[B][0], "B9D": qs[B][1]} predictedThreshes = \ dict((c, applyCurrentLM(qDict, c)) for c in colorNames) # print ",".join("%5.4f" % t for t in predictedThresholds.values()) thresholdNDArray(pixels, predictedThreshes, dropSaturated=True)
def applyPredThresh(pixels): # zero removal for quantile computation nonzp = pixels[np.any(pixels, 1)] counts = {c: np.bincount(nonzp[:, c], minlength=256) for c in colors} qs = {c: countQuantiles(counts[c], iles) for c in colors} # clunky: qDict = { "R8D": qs[R][0], "R9D": qs[R][1], "G8D": qs[G][0], "G9D": qs[G][1], "B8D": qs[B][0], "B9D": qs[B][1] } predictedThreshes = \ dict((c, applyCurrentLM(qDict, c)) for c in colorNames) # print ",".join("%5.4f" % t for t in predictedThresholds.values()) thresholdNDArray(pixels, predictedThreshes, dropSaturated=True)
{"15m60xendser301.TIF", "15m60xendser301.TIF", "15m60xendser301.TIF", "120m60xac17ser24.TIF", "120m60xac17ser27.TIF"}: print ".....skipping:" continue currentImage = Image.open(imageDataPath+exampleFilename) pixels = fromimage(currentImage).reshape((numImagePoints,3)) # zero removal if REMOVE_ZEROS: pixels = pixels[np.any(pixels, 1)] counts = {c:np.bincount(pixels[:,c], minlength=256) for c in colors} qs = {c : countQuantiles(counts[c], iles) for c in colors} # import pdb; pdb.set_trace() # clunky: qDict = {"R8D": qs[R][0], "R9D": qs[R][1], "G8D": qs[G][0], "G9D": qs[G][1], "B8D": qs[B][0], "B9D": qs[B][1]} predictedThresholds = \ dict((c, applyCurrentLM(qDict, c)) for c in colorNames) print ",".join("%5.4f" % t for t in predictedThresholds.values()) thresholdNDArray(pixels, predictedThresholds) stackArray = np.concatenate((stackArray, pixels))
"120m60xac17ser24.TIF", "120m60xac17ser27.TIF"}: print ".....skipping:" continue currentImage = Image.open(imageDataPath + exampleFilename) pixels = fromimage(currentImage).reshape((numImagePoints, 3)) # zero removal if REMOVE_ZEROS: pixels = pixels[np.any(pixels, 1)] counts = {c: np.bincount(pixels[:, c], minlength=256) for c in colors} qs = {c: countQuantiles(counts[c], iles) for c in colors} # import pdb; pdb.set_trace() # clunky: qDict = { "R8D": qs[R][0], "R9D": qs[R][1], "G8D": qs[G][0], "G9D": qs[G][1], "B8D": qs[B][0], "B9D": qs[B][1] } predictedThresholds = \ dict((c, applyCurrentLM(qDict, c)) for c in colorNames) print ",".join("%5.4f" % t for t in predictedThresholds.values()) thresholdNDArray(pixels, predictedThresholds) stackArray = np.concatenate((stackArray, pixels))
currentImage = Image.open(imageDataPath+exampleFilename) pixels = fromimage(currentImage).reshape((numImagePoints,3)) if applyPredThresholds: # zero removal for quantile computation pixels = pixels[np.any(pixels, 1)] counts = {c:np.bincount(pixels[:,c], minlength=256) for c in colors} qs = {c:countQuantiles(counts[c], iles) for c in colors} # clunky: qDict = {"R8D": qs[R][0], "R9D": qs[R][1], "G8D": qs[G][0], "G9D": qs[G][1], "B8D": qs[B][0], "B9D": qs[B][1]} predThreshes = dict((c, applyCurrentLM(qDict, c)) for c in colorNames) # print ",".join("%5.4f" % t for t in predThresholds.values()) thresholdNDArray(pixels, predThreshes, dropSaturated=True) expArray = np.concatenate((expArray, pixels)) ######################################### # all to here is necessary to get joined series ######################################### org = simplifyOrgStain(cnd["Organelle"], cnd["Stain"]) t = timeToIdx(cnd["Time"]) print org, t # convert image stack to counts and add to histograms for c1, c2 in colorPairs: