def fix_dico_shape(fulldico, outdico, NPixOut): # dico_model = 'image_full_ampphase_di_m.NS.DicoModel' # save_dico = dico_model.replace('.DicoModel', '.restricted.DicoModel') # NPixOut = 10000 dico = MyPickle.Load(fulldico) NPix = dico['ModelShape'][-1] NPix0, _ = EstimateNpix(float(NPix), Padding=1) if NPix != NPix0: raise ValueError("NPix != NPix0") logger.info("Changing image size: %i -> %i pixels" % (NPix, NPixOut)) xc0 = NPix // 2 xc1 = NPixOut // 2 dx = xc0 - xc1 DCompOut = {} for k, v in dico.items(): if k == 'Comp': DCompOut['Comp'] = {} continue DCompOut[k] = v DCompOut["Type"] = "SSD" N, M, _, _ = dico['ModelShape'] DCompOut['ModelShape'] = [N, M, NPixOut, NPixOut] for (x0, y0) in dico['Comp'].keys(): x1 = x0 - dx y1 = y0 - dx c0 = (x1 >= 0) & (x1 < NPixOut) c1 = (y1 >= 0) & (y1 < NPixOut) if c0 & c1: logger.info("Mapping (%i,%i)->(%i,%i)" % (x0, y0, x1, y1)) DCompOut['Comp'][(x1, y1)] = dico['Comp'][(x0, y0)] logger.info("Saving in {}".format(outdico)) MyPickle.Save(DCompOut, outdico)
def Cluster(self): l, m = self.radec2lm(self.Cat.ra, self.Cat.dec) S = self.Cat.S.copy() PolyList = None self.BigPolygon = [] PolyList = [] if self.AvoidPolygons != "": print("Reading polygon file: %s" % self.AvoidPolygons, file=log) PolyList += MyPickle.Load(self.AvoidPolygons) if len(PolyList) > 0: LPoly = [] inside = np.zeros((l.size, ), np.float32) for iPolygon, Poly in enumerate(PolyList): ra, dec = Poly.T lp, mp = self.radec2lm(ra, dec) Poly[:, 0] = lp Poly[:, 1] = mp P = Polygon.Polygon(Poly) if P.area() > self.BigPolygonSize: self.BigPolygon.append(Poly) for ip in range(l.size): if P.isInside(l[ip], m[ip]): inside[ip] = 1 # l=l[inside==0] # m=m[inside==0] # S=S[inside==0] print("There are %i big polygons" % len(self.BigPolygon), file=log) if self.CentralRadius > 0: print("Create central polygon with radius %f degrees" % self.CentralRadius, file=log) Rad = self.CentralRadius * np.pi / 180 th = np.arange(0, 2. * np.pi, 2. * np.pi / 100) lp = np.cos(th) * Rad mp = np.sin(th) * Rad Poly = np.zeros((lp.size, 2), np.float32) Poly[:, 0] = lp Poly[:, 1] = mp PolyList += [Poly] CC = Sky.ClassClusterDEAP.ClassCluster(l, m, S, nNode=self.NCluster, NGen=self.NGen, NPop=self.NPop, DoPlot=self.DoPlot, PolyCut=self.PolyCut, NCPU=self.NCPU, BigPolygon=self.BigPolygon) CC.setAvoidPolygon(PolyList) xyNodes, self.LPolygon = CC.Cluster() nNodes = xyNodes.size // 2 xc, yc = xyNodes.reshape((2, nNodes)) self.xcyc = xc, yc
def main(args=None, messages=[]): if args is None: args = MyPickle.Load(SaveFile) MSList = expandMSList(args.ms) MSList = [mstuple[0] for mstuple in MSList] D = ClassDynSpecMS(ListMSName=MSList, ColName=args.data, ModelName=args.model, SolsName=args.sols, UVRange=args.uv, FileCoords=args.srclist, Radius=args.rad, NOff=args.noff, Image=args.image, SolsDir=args.SolsDir, NCPU=args.NCPU) if D.NDirSelected == 0: return D.StackAll() SaveMachine = ClassSaveResults.ClassSaveResults(D) SaveMachine.WriteFits() SaveMachine.PlotSpec() SaveMachine.tarDirectory()
def GiveMMFromFile(self,FileName=None): """ Initialise a model machine from a file Input: FileName = The file to read """ if FileName is not None: DicoSMStacked = MyPickle.Load(FileName) return self.GiveMMFromDico(DicoSMStacked) else: return self.GiveMMFromDico()
def GiveInitialisedMMFromFile(self, FileName): """ Initialise a model machine from a file Input: FileName = The file to read """ DicoSMStacked = MyPickle.Load(FileName) if self.GD is None: self.GD = DicoSMStacked["GD"] MM = self.GiveMMFromDico(DicoSMStacked) MM.FromDico(DicoSMStacked) return MM
def testMF_DATA(): Dico = MyPickle.Load("SaveTest") Dirty = Dico["Dirty"] PSF = Dico["PSF"] FreqsInfo = Dico["FreqsInfo"] IslandBestIndiv = Dico["IslandBestIndiv"] ListPixData = Dico["ListPixData"] ListPixParms = Dico["ListPixParms"] GD = Dico["GD"] FacetID = Dico["FacetID"] IdSharedMem = Dico["IdSharedMem"] iIsland = Dico["iIsland"] #GD["GAClean"]["GASolvePars"]=["S","Alpha","GSig"] #GD["GAClean"]["GASolvePars"]=["S","Alpha"] nch = FreqsInfo["MeanJonesBand"][FacetID].size WeightMeanJonesBand = FreqsInfo["MeanJonesBand"][FacetID].reshape( (nch, 1, 1, 1)) WeightMueller = WeightMeanJonesBand.ravel() WeightMuellerSignal = WeightMueller * FreqsInfo["WeightChansImages"].ravel( ) # IncreaseIslandMachine=ClassIncreaseIsland.ClassIncreaseIsland() # ListPixData=IncreaseIslandMachine.IncreaseIsland(ListPixData,dx=20) # IncreaseIslandMachine=ClassIncreaseIsland.ClassIncreaseIsland() # ListPixData=IncreaseIslandMachine.IncreaseIsland(ListPixData,dx=5) #IslandBestIndiv=np.zeros((len(GD["GAClean"]["GASolvePars"])*len( CEv = ClassEvolveGA(Dirty, PSF, FreqsInfo, ListPixParms=ListPixParms, ListPixData=ListPixData, GD=GD, IslandBestIndiv=IslandBestIndiv, WeightFreqBands=WeightMuellerSignal, iIsland=iIsland, IdSharedMem=IdSharedMem) CEv.main()
def Cluster(self): l,m=self.radec2lm(self.Cat.ra,self.Cat.dec) S=self.Cat.S.copy() PolyList=None if self.AvoidPolygons!="": print>>log,"Reading polygon file: %s"%self.AvoidPolygons self.BigPolygon=[] PolyList=MyPickle.Load(self.AvoidPolygons) LPoly=[] inside=np.zeros((l.size,),np.float32) for iPolygon,Poly in enumerate(PolyList): ra,dec=Poly.T lp,mp=self.radec2lm(ra,dec) Poly[:,0]=lp Poly[:,1]=mp P=Polygon.Polygon(Poly) if P.area()>self.BigPolygonSize: self.BigPolygon.append(Poly) for ip in range(l.size): if P.isInside(l[ip],m[ip]): inside[ip]=1 l=l[inside==0] m=m[inside==0] S=S[inside==0] print>>log,"There are %i big polygons"%len(self.BigPolygon) CC=Sky.ClassClusterDEAP.ClassCluster(l,m,S,nNode=self.NCluster, NGen=self.NGen, NPop=self.NPop, DoPlot=self.DoPlot, PolyCut=self.PolyCut, NCPU=self.NCPU, BigPolygon=self.BigPolygon) CC.setAvoidPolygon(PolyList) xyNodes,self.LPolygon=CC.Cluster() nNodes=xyNodes.size/2 xc,yc=xyNodes.reshape((2,nNodes)) self.xcyc=xc,yc
def test(): P = ClassPrint.ClassPrint() Obj, ValObj = MyPickle.Load("test") #return Obj #ValObj,_=Obj.parse_args() #return ValObj LGroups = Obj.option_groups for Group in LGroups: print(Group.title) option_list = Group.option_list for o in option_list: lopt = o._long_opts[0] oname = lopt.split("--")[-1] V = getattr(ValObj, oname) if V != "": P.Print(oname, V) # strName=%s # print " "oname,V print()
def main(args=None, messages=[]): if args is None: args = MyPickle.Load(SaveFile) MSList=None if args.ms: MSList=expandMSList(args.ms) MSList=[mstuple[0] for mstuple in MSList] D = ClassDynSpecMS(ListMSName=MSList, ColName=args.data, ModelName=args.model, SolsName=args.sols, ColWeights=args.WeightCol, UVRange=args.uv, FileCoords=args.srclist, Radius=args.rad, NOff=args.noff, ImageI=args.imageI, ImageV=args.imageV, SolsDir=args.SolsDir,NCPU=args.NCPU, BaseDirSpecs=args.BaseDirSpecs, BeamModel=args.BeamModel, BeamNBand=args.BeamNBand) if D.NDirSelected==0: return if D.Mode=="Spec": D.StackAll() SaveMachine=ClassSaveResults.ClassSaveResults(D) if D.Mode=="Spec": SaveMachine.WriteFits() SaveMachine.PlotSpec() SaveMachine.SaveCatalog() SaveMachine.tarDirectory() else: SaveMachine.SaveCatalog() SaveMachine.PlotSpec(Prefix="_replot")
def FromFile(self,FileName): print>>log, "Reading dico model from file %s"%FileName self.DicoModel=MyPickle.Load(FileName) self.FromDico(self.DicoModel)
def FromFile(self, FileName): print >> log, "Reading dico model from %s" % FileName self.DicoSMStacked = MyPickle.Load(FileName) self.FromDico(self.DicoSMStacked)
def main(OP=None, messages=[]): if OP is None: OP = MyPickle.Load(SaveFile) print("Using settings from %s, then command line."%SaveFile) DicoConfig = OP.DicoConfig ImageName = DicoConfig["Output"]["Name"] if not ImageName: raise Exceptions.UserInputError("--Output-Name not specified, can't continue.") if not DicoConfig["Data"]["MS"]: raise Exceptions.UserInputError("--Data-MS not specified, can't continue.") # create directory if it exists dirname = os.path.dirname(ImageName) if not os.path.exists(dirname) and not dirname == "": os.mkdir(dirname) # setup logging logger.logToFile(ImageName + ".log", append=DicoConfig["Log"]["Append"]) global log log = logger.getLogger("DDFacet") # disable colors and progressbars if requested ModColor.silent = SkyModel.Other.ModColor.silent = \ progressbar.ProgressBar.silent = \ DicoConfig["Log"]["Boring"] if messages: if not DicoConfig["Log"]["Boring"]: #os.system('clear') logo.print_logo() for msg in messages: print(msg, file=log) print("Checking system configuration:", file=log) # check for SHM size ram_size = os.sysconf('SC_PAGE_SIZE') * os.sysconf('SC_PHYS_PAGES') shm_stats = os.statvfs('/dev/shm') shm_size = shm_stats.f_bsize * shm_stats.f_blocks shm_relsize = shm_size / float(ram_size) shm_avail = shm_stats.f_bsize * shm_stats.f_bavail / float(ram_size) if shm_relsize < 0.6: print(ModColor.Str("""WARNING: max shared memory size is only {:.0%} of total RAM size. This can cause problems for large imaging jobs. A setting of 90% is recommended for DDFacet and killMS. If your processes keep failing with SIGBUS or "bus error" messages, it is most likely for this reason. You can change the memory size by running $ sudo mount -o remount,size=90% /dev/shm To make the change permanent, edit /etc/defaults/tmps, and add a line saying "SHM_SIZE=90%". """.format(shm_relsize)), file=log) else: print(" Max shared memory size is {:.0%} of total RAM size; {:.0%} currently available".format(shm_relsize, shm_avail), file=log) try: output = subprocess.check_output(["/sbin/sysctl", "vm.max_map_count"],universal_newlines=True) except Exception: print(ModColor.Str("""WARNING: /sbin/sysctl vm.max_map_count failed. Unable to check this setting."""), file=log) max_map_count = None else: max_map_count = int(output.strip().rsplit(" ", 1)[-1]) if max_map_count is not None: if max_map_count < 500000: print(ModColor.Str("""WARNING: sysctl vm.max_map_count = {}. This may be too little for large DDFacet and killMS jobs. If you get strange "file exists" errors on /dev/shm, them try to bribe, beg or threaten your friendly local sysadmin into setting vm.max_map_count=1000000 in /etc/sysctl.conf. """.format(max_map_count)), file=log) else: print(" sysctl vm.max_map_count = {}".format(max_map_count), file=log) # check for memory lock limits import resource msoft, mhard = resource.getrlimit(resource.RLIMIT_MEMLOCK) if msoft >=0 or mhard >=0: print(ModColor.Str("""WARNING: your system has a limit on memory locks configured. This may possibly slow down DDFacet performance. You can try removing the limit by running $ ulimit -l unlimited If this gives an "operation not permitted" error, you can try to bribe, beg or threaten your friendly local sysadmin into doing # echo "* - memlock unlimited" >> /etc/security/limits.conf """), file=log) if DicoConfig["Debug"]["Pdb"] == "always": print("--Debug-Pdb=always: unexpected errors will be dropped into pdb", file=log) Exceptions.enable_pdb_on_error(ModColor.Str("DDFacet has encountered an unexpected error. Dropping you into pdb for a post-mortem.\n" + "(This is because you're running with --Debug-Pdb set to 'always'.)")) elif DicoConfig["Debug"]["Pdb"] == "auto" and not DicoConfig["Log"]["Boring"]: print("--Debug-Pdb=auto and not --Log-Boring: unexpected errors will be dropped into pdb", file=log) Exceptions.enable_pdb_on_error(ModColor.Str("DDFacet has encountered an unexpected error. Dropping you into pdb for a post-mortem.\n" + "(This is because you're running with --Debug-Pdb set to 'auto' and --Log-Boring is off.)")) # print current options OP.Print(dest=log) # enable memory logging logger.enableMemoryLogging(DicoConfig["Log"]["Memory"]) # get rid of old shm arrays from previous runs Multiprocessing.cleanupStaleShm() # initialize random seed from config if set, or else from system time if DicoConfig["Misc"]["RandomSeed"] is not None: DicoConfig["Misc"]["RandomSeed"]=int(DicoConfig["Misc"]["RandomSeed"]) print("random seed=%d (explicit)" % DicoConfig["Misc"]["RandomSeed"], file=log) else: DicoConfig["Misc"]["RandomSeed"] = int(time.time()) print("random seed=%d (automatic)" % DicoConfig["Misc"]["RandomSeed"], file=log) np.random.seed(DicoConfig["Misc"]["RandomSeed"]) # init NCPU for different bits of parallelism ncpu = int(DicoConfig["Parallel"]["NCPU"] or psutil.cpu_count()) DicoConfig["Parallel"]["NCPU"]=ncpu _pyArrays.pySetOMPNumThreads(ncpu) NpParallel.NCPU_global = ModFFTW.NCPU_global = ncpu numexpr.set_num_threads(ncpu) print("using up to %d CPUs for parallelism" % ncpu, file=log) # write parset OP.ToParset("%s.parset"%ImageName) Mode = DicoConfig["Output"]["Mode"] # init semaphores, as they're needed for weight calculation too ClassFacetMachine.ClassFacetMachine.setup_semaphores(DicoConfig) # data machine initialized for all cases except PSF-only mode # psf machine initialized for all cases except Predict-only mode Imager = ClassDeconvMachine.ClassImagerDeconv(GD=DicoConfig, BaseName=ImageName, predict_only=(Mode == "Predict" or Mode == "Subtract"), data=(Mode != "PSF"), psf=(Mode != "Predict" and Mode != "Dirty" and Mode != "Subtract"), readcol=(Mode != "Predict" and Mode != "PSF"), deconvolve=("Clean" in Mode)) Imager.Init() # Imager.testDegrid() # stop if "Predict" in Mode or "Subtract" in Mode: Imager.GivePredict() if "Clean" in Mode: Imager.main() elif "Dirty" in Mode: sparsify = DicoConfig["Comp"]["Sparsification"] if sparsify and isinstance(sparsify, list): sparsify = sparsify[0] Imager.GiveDirty(psf="PSF" in Mode, sparsify=sparsify) elif "PSF" in Mode: sparsify = DicoConfig["Comp"]["Sparsification"] if sparsify and isinstance(sparsify, list): sparsify = sparsify[0] Imager.MakePSF(sparsify=sparsify) elif "RestoreAndShift" == Mode: Imager.RestoreAndShift()
def testMO_DATA(): Dico= MyPickle.Load("SaveTest") Dirty=Dico["Dirty"] PSF=Dico["PSF"] PSF2=np.squeeze(PSF) ListPixData=Dico["ListPixData"] FreqsInfo=Dico["FreqsInfo"] FreqsInfo=Dico["FreqsInfo"] IslandBestIndiv=Dico["IslandBestIndiv"] ListPixParms=ListPixData ListSquarePix=Dico["ListSquarePix"] ThisPixList=ListPixData ThisSquarePixList=ListSquarePix GD=Dico["GD"] FacetID=Dico["FacetID"] nch=FreqsInfo["MeanJonesBand"][FacetID].size WeightMeanJonesBand=FreqsInfo["MeanJonesBand"][FacetID].reshape((nch,1,1,1)) WeightMueller=WeightMeanJonesBand.ravel() WeightMuellerSignal=WeightMueller*FreqsInfo["WeightChansImages"].ravel() #IncreaseIslandMachine=ClassIncreaseIsland.ClassIncreaseIsland() #ListPixData=IncreaseIslandMachine.IncreaseIsland(ListPixData,dx=5) # 0) Load Island info (center and square data) ListSquarePix_Center=ListSquarePix['IslandCenter'] ListSquarePix_Data=ListSquarePix['IslandSquareData'] ListSquarePix_Mask=ListSquarePix['IslandSquareMask'] orixisland,oriyisland=ListSquarePix_Data.shape # size of the square postage stamp around island ListSquarePix_Data=PSF2 xisland,yisland=ListSquarePix_Data.shape # size of the square postage stamp around island print(xisland) # 1) Shape PSF and Dirty to have even number of pixels (required by Moresane) # DEAL WITH SQUARE DATA OF ISLAND IF UNEVEN # Crop PSF to the island postage stamp #PSFCrop=CropPSF(PSF,xisland) #PSF2=CropPSF(PSF2,71) # MORESANE requires even sized images ==> Padding by one row and one column cropped_square_data_to_even = False if xisland % 2 != 0: # PSFCrop_even = np.zeros((xisland+1, xisland+1)) # PSFCrop_even[:-1, :-1] = np.squeeze(PSFCrop) Dirty_even = np.zeros((xisland - 1, xisland - 1)) Dirty_even[:, :] = ListSquarePix_Data[:-1, :-1] cropped_square_data_to_even = True else: Dirty_even = ListSquarePix_Data # make it even by removing one line and one column (usually outside of the interesting island region) # xbigdirty,ybigdirty=np.squeeze(Dirty).shape # if xbigdirty % 2 != 0: # Dirty_even=np.zeros((xbigdirty-1,xbigdirty-1)) # Dirty_even[:,:]=np.squeeze(Dirty)[:-1,:-1] xbigpsf,ybigpsf=PSF2.shape cropped_square_psf_to_even = False if xbigpsf % 2 != 0: PSF2_even=np.zeros((xbigpsf-1,xbigpsf-1)) PSF2_even[:,:]=PSF2[:-1,:-1] cropped_square_data_to_even = True else: PSF2_even=PSF2 # 2) Run the actual MinorCycle algo DictMoresaneParms=GD['MORESANE'] Moresane=ClassMoresane(Dirty_even,PSF2_even,DictMoresaneParms,GD=GD) Model_Square=Moresane.main() # 3) Apply Island mask to model to get rid of regions outside the island. cropped_square_to_even = False if cropped_square_data_to_even: # then restore the model to its original uneven dimension Model_Square_uneven = np.zeros((xisland, xisland)) Model_Square_uneven[:-1, :-1] = Model_Square Model_Square = Model_Square_uneven if cropped_square_psf_to_even: # restore original PSF size PSF_uneven=PSF2 Model_Square=CropPSF(Model_Square, orixisland) Model_Square *= ListSquarePix_Mask # masking outside the island # 4) Convert back to Island format ( "S" and ThisPixList ) NewModel, NewThisPixList = SquareIslandtoIsland(Model_Square, ThisSquarePixList, ThisPixList) Model = NewModel ThisPixList = NewThisPixList return Model
def main(OP=None, messages=[]): if OP is None: OP = MyPickle.Load(SaveFile) print "Using settings from %s, then command line." % SaveFile DicoConfig = OP.DicoConfig ImageName = DicoConfig["Output"]["Name"] if not ImageName: raise Exceptions.UserInputError( "--Output-Name not specified, can't continue.") if not DicoConfig["Data"]["MS"]: raise Exceptions.UserInputError( "--Data-MS not specified, can't continue.") # create directory if it exists dirname = os.path.dirname(ImageName) if not os.path.exists(dirname) and not dirname == "": os.mkdir(dirname) # setup logging MyLogger.logToFile(ImageName + ".log", append=DicoConfig["Log"]["Append"]) global log log = MyLogger.getLogger("DDFacet") # disable colors and progressbars if requested ModColor.silent = SkyModel.Other.ModColor.silent = \ progressbar.ProgressBar.silent = \ DicoConfig["Log"]["Boring"] if messages: if not DicoConfig["Log"]["Boring"]: #os.system('clear') logo.print_logo() for msg in messages: print >> log, msg if DicoConfig["Debug"]["Pdb"] == "always": print >> log, "--Debug-Pdb=always: unexpected errors will be dropped into pdb" Exceptions.enable_pdb_on_error( ModColor.Str( "DDFacet has encountered an unexpected error. Dropping you into pdb for a post-mortem.\n" + "(This is because you're running with --Debug-Pdb set to 'always'.)" )) elif DicoConfig["Debug"][ "Pdb"] == "auto" and not DicoConfig["Log"]["Boring"]: print >> log, "--Debug-Pdb=auto and not --Log-Boring: unexpected errors will be dropped into pdb" Exceptions.enable_pdb_on_error( ModColor.Str( "DDFacet has encountered an unexpected error. Dropping you into pdb for a post-mortem.\n" + "(This is because you're running with --Debug-Pdb set to 'auto' and --Log-Boring is off.)" )) # print current options OP.Print(dest=log) # enable memory logging MyLogger.enableMemoryLogging(DicoConfig["Log"]["Memory"]) # get rid of old shm arrays from previous runs Multiprocessing.cleanupStaleShm() # initialize random seed from config if set, or else from system time if DicoConfig["Misc"]["RandomSeed"] is not None: print >> log, "random seed=%d (explicit)" % DicoConfig["Misc"][ "RandomSeed"] else: DicoConfig["Misc"]["RandomSeed"] = int(time.time()) print >> log, "random seed=%d (automatic)" % DicoConfig["Misc"][ "RandomSeed"] np.random.seed(DicoConfig["Misc"]["RandomSeed"]) # init NCPU for different bits of parallelism ncpu = DicoConfig["Parallel"]["NCPU"] or psutil.cpu_count() DicoConfig["Parallel"]["NCPU"] = ncpu _pyArrays.pySetOMPNumThreads(ncpu) NpParallel.NCPU_global = ModFFTW.NCPU_global = ncpu numexpr.set_num_threads(ncpu) print >> log, "using up to %d CPUs for parallelism" % ncpu # write parset OP.ToParset("%s.parset" % ImageName) Mode = DicoConfig["Output"]["Mode"] # init semaphores, as they're needed for weight calculation too ClassFacetMachine.ClassFacetMachine.setup_semaphores(DicoConfig) # data machine initialized for all cases except PSF-only mode # psf machine initialized for all cases except Predict-only mode Imager = ClassDeconvMachine.ClassImagerDeconv( GD=DicoConfig, BaseName=ImageName, predict_only=(Mode == "Predict" or Mode == "Subtract"), data=(Mode != "PSF"), psf=(Mode != "Predict" and Mode != "Dirty" and Mode != "Subtract"), readcol=(Mode != "Predict" and Mode != "PSF"), deconvolve=("Clean" in Mode)) Imager.Init() # Imager.testDegrid() # stop if "Predict" in Mode or "Subtract" in Mode: Imager.GivePredict() if "Clean" in Mode: Imager.main() elif "Dirty" in Mode: sparsify = DicoConfig["Comp"]["Sparsification"] if sparsify and isinstance(sparsify, list): sparsify = sparsify[0] Imager.GiveDirty(psf="PSF" in Mode, sparsify=sparsify) elif "PSF" in Mode: sparsify = DicoConfig["Comp"]["Sparsification"] if sparsify and isinstance(sparsify, list): sparsify = sparsify[0] Imager.MakePSF(sparsify=sparsify) elif "RestoreAndShift" == Mode: Imager.RestoreAndShift()
def test2(): Obj, ValObj = MyPickle.Load("test") PrintOptParse(Obj, ValObj, RejectGroup=["CohJones"])
def FromFile(self,FileName): print("Reading dico model from file %s"%FileName, file=log) self.DicoSMStacked=MyPickle.Load(FileName) self.FromDico(self.DicoSMStacked)