Пример #1
0
def env_agent_config(cfg, seed=1):
    env = NormalizedActions(gym.make(cfg.env_name))  # 装饰action噪声
    env.seed(seed)  # 随机种子
    state_dim = env.observation_space.shape[0]
    action_dim = env.action_space.shape[0]
    agent = DDPG(state_dim, action_dim, cfg)
    return env, agent
Пример #2
0
        while not done:
            i_step += 1
            action = agent.choose_action(state)
            action = ou_noise.get_action(action, i_step)  # 即paper中的random process
            next_state, reward, done, _ = env.step(action)
            ep_reward += reward
            agent.memory.push(state, action, reward, next_state, done)
            agent.update()
            state = next_state
        print('Episode:{}/{}, Reward:{}'.format(i_episode+1,cfg.train_eps,ep_reward))
        ep_steps.append(i_step)
        rewards.append(ep_reward)
        if ma_rewards:
            ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward)
        else:
            ma_rewards.append(ep_reward)
    print('Complete training!')
    return rewards,ma_rewards

if __name__ == "__main__":
    cfg = DDPGConfig()
    env = NormalizedActions(gym.make("Pendulum-v0"))
    env.seed(1) # 设置env随机种子
    state_dim = env.observation_space.shape[0]
    action_dim = env.action_space.shape[0]
    agent = DDPG(state_dim,action_dim,cfg)
    rewards,ma_rewards = train(cfg,env,agent)
    agent.save(path=SAVED_MODEL_PATH)
    save_results(rewards,ma_rewards,tag='train',path=RESULT_PATH)
    plot_rewards(rewards,ma_rewards,tag="train",algo = cfg.algo,path=RESULT_PATH)
    
Пример #3
0
            state = next_state
            if done:
                break
        print('Episode:{}/{}, Reward:{}, Steps:{}, Done:{}'.format(
            i_episode + 1, cfg.train_eps, ep_reward, i_step + 1, done))
        ep_steps.append(i_step)
        rewards.append(ep_reward)
        if ma_rewards:
            ma_rewards.append(0.9 * ma_rewards[-1] + 0.1 * ep_reward)
        else:
            ma_rewards.append(ep_reward)
    print('Complete training!')
    return rewards, ma_rewards


if __name__ == "__main__":
    cfg = DDPGConfig()
    env = NormalizedActions(gym.make("Pendulum-v0"))
    env.seed(1)  # 设置env随机种子
    n_states = env.observation_space.shape[0]
    n_actions = env.action_space.shape[0]
    agent = DDPG(n_states, n_actions, cfg)
    rewards, ma_rewards = train(cfg, env, agent)
    agent.save(path=SAVED_MODEL_PATH)
    save_results(rewards, ma_rewards, tag='train', path=RESULT_PATH)
    plot_rewards(rewards,
                 ma_rewards,
                 tag="train",
                 algo=cfg.algo,
                 path=RESULT_PATH)