def env_agent_config(cfg, seed=1): env = NormalizedActions(gym.make(cfg.env_name)) # 装饰action噪声 env.seed(seed) # 随机种子 state_dim = env.observation_space.shape[0] action_dim = env.action_space.shape[0] agent = DDPG(state_dim, action_dim, cfg) return env, agent
while not done: i_step += 1 action = agent.choose_action(state) action = ou_noise.get_action(action, i_step) # 即paper中的random process next_state, reward, done, _ = env.step(action) ep_reward += reward agent.memory.push(state, action, reward, next_state, done) agent.update() state = next_state print('Episode:{}/{}, Reward:{}'.format(i_episode+1,cfg.train_eps,ep_reward)) ep_steps.append(i_step) rewards.append(ep_reward) if ma_rewards: ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward) else: ma_rewards.append(ep_reward) print('Complete training!') return rewards,ma_rewards if __name__ == "__main__": cfg = DDPGConfig() env = NormalizedActions(gym.make("Pendulum-v0")) env.seed(1) # 设置env随机种子 state_dim = env.observation_space.shape[0] action_dim = env.action_space.shape[0] agent = DDPG(state_dim,action_dim,cfg) rewards,ma_rewards = train(cfg,env,agent) agent.save(path=SAVED_MODEL_PATH) save_results(rewards,ma_rewards,tag='train',path=RESULT_PATH) plot_rewards(rewards,ma_rewards,tag="train",algo = cfg.algo,path=RESULT_PATH)
state = next_state if done: break print('Episode:{}/{}, Reward:{}, Steps:{}, Done:{}'.format( i_episode + 1, cfg.train_eps, ep_reward, i_step + 1, done)) ep_steps.append(i_step) rewards.append(ep_reward) if ma_rewards: ma_rewards.append(0.9 * ma_rewards[-1] + 0.1 * ep_reward) else: ma_rewards.append(ep_reward) print('Complete training!') return rewards, ma_rewards if __name__ == "__main__": cfg = DDPGConfig() env = NormalizedActions(gym.make("Pendulum-v0")) env.seed(1) # 设置env随机种子 n_states = env.observation_space.shape[0] n_actions = env.action_space.shape[0] agent = DDPG(n_states, n_actions, cfg) rewards, ma_rewards = train(cfg, env, agent) agent.save(path=SAVED_MODEL_PATH) save_results(rewards, ma_rewards, tag='train', path=RESULT_PATH) plot_rewards(rewards, ma_rewards, tag="train", algo=cfg.algo, path=RESULT_PATH)