def __init__(self, in_planes, planes, bits, stride=1): super(QuantBottleneck, self).__init__() first_bit = bits.pop(0) self.conv1 = DSConv2d(in_planes, planes, 1, 32, bit=first_bit, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.activation1 = BFPActivation(bits[0], 32) self.conv2 = DSConv2d( planes, planes, kernel_size=3, block_size=32, bit=bits.pop(0), stride=stride, padding=1, bias=False, ) self.bn2 = nn.BatchNorm2d(planes) self.activation2 = BFPActivation(bits[0], 32) self.conv3 = DSConv2d( planes, self.expansion * planes, kernel_size=1, block_size=32, bit=bits.pop(0), bias=False, ) self.bn3 = nn.BatchNorm2d(self.expansion * planes) self.activation3 = (BFPActivation(bits[0], 32) if len(bits) > 1 else nn.Identity()) self.shortcut = nn.Sequential() if stride != 1 or in_planes != self.expansion * planes: self.shortcut = nn.Sequential( DSConv2d( in_planes, self.expansion * planes, 1, block_size=32, bit=first_bit, stride=stride, bias=False, ), nn.BatchNorm2d(self.expansion * planes), )
def __init__(self, in_planes, planes, bits, stride=1): super(QuantBasicBlock, self).__init__() first_bit = bits.pop(0) self.conv1 = DSConv2d( in_planes, planes, 3, block_size=32, bit=first_bit, stride=stride, padding=1, bias=False, ) self.bn1 = nn.BatchNorm2d(planes) self.activation1 = BFPActivation(bits[0], 32) self.conv2 = DSConv2d( planes, planes, kernel_size=3, block_size=32, bit=bits.pop(0), stride=1, padding=1, bias=False, ) self.bn2 = nn.BatchNorm2d(planes) # This is just because the last layer doesn't need to quantize the activation self.activation2 = (BFPActivation(bits[0], 32) if len(bits) > 0 else nn.Identity()) self.shortcut = nn.Sequential() if stride != 1 or in_planes != self.expansion * planes: self.shortcut = nn.Sequential( DSConv2d( in_planes, self.expansion * planes, 1, block_size=32, bit=first_bit, stride=stride, bias=False, ), nn.BatchNorm2d(self.expansion * planes), )
def conv1x1(in_planes, out_planes, block_size, bit, stride=1): """1x1 convolution""" return DSConv2d( in_planes, out_planes, kernel_size=1, block_size=block_size, bit=bit, stride=stride, bias=False, )
def __init__(self, bits): super(CNNX, self).__init__(bits, self.number_bits) self.block_size = 32 bit = self.bits.pop(0) self.conv1 = DSConv2d(3, 64, (3, 3), block_size=32, bit=bit, padding=1) self.bn1 = torch.nn.BatchNorm2d(64) self.features1, outch = self.__make_layers__(64, 3) self.max_pool1 = torch.nn.MaxPool2d(2, stride=2) self.features2, outch = self.__make_layers__(outch, 3) self.max_pool2 = torch.nn.MaxPool2d(2, stride=2) self.features3, outch = self.__make_layers__(outch, 3) self.avg_pool = torch.nn.AvgPool2d(8) self.linear = torch.nn.Linear(outch, 10)
def conv3x3(in_planes, out_planes, block_size, bit, stride=1, groups=1, dilation=1): """3x3 convolution with padding""" return DSConv2d( in_planes, out_planes, kernel_size=3, block_size=block_size, bit=bit, stride=stride, padding=dilation, groups=groups, bias=False, dilation=dilation, )
def __init__(self, block, num_blocks, bits, num_classes=10): super(QUANTIZED_ResNet, self).__init__() self.in_planes = 64 _bits_ = bits.copy() self.conv1 = DSConv2d( 3, 64, kernel_size=3, block_size=32, bit=_bits_.pop(0), stride=1, padding=1, bias=False, ) self.activation = BFPActivation(_bits_[0], 32) self.bn1 = nn.BatchNorm2d(64) self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1, bits=_bits_) self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2, bits=_bits_) self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2, bits=_bits_) self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2, bits=_bits_) self.linear = nn.Linear(512 * block.expansion, num_classes)
def __init__(self, in_planes, out_planes, kernel, block_size, bit, **kwargs): super(BaseConv, self).__init__() self.activation = BFPActivation(bit, 7, block_size) self.conv = DSConv2d(in_planes, out_planes, kernel, block_size, bit, **kwargs) self.bn = torch.nn.BatchNorm2d(out_planes)
def __init__( self, block, layers, bits, number_bits, num_classes=1000, zero_init_residual=False, groups=1, width_per_group=64, replace_stride_with_dilation=None, norm_layer=None, ): super(ResNet, self).__init__(bits, number_bits) if norm_layer is None: norm_layer = nn.BatchNorm2d self._norm_layer = norm_layer self.inplanes = 64 self.dilation = 1 if replace_stride_with_dilation is None: # each element in the tuple indicates if we should replace # the 2x2 stride with a dilated convolution instead replace_stride_with_dilation = [False, False, False] if len(replace_stride_with_dilation) != 3: raise ValueError("replace_stride_with_dilation should be None " "or a 3-element tuple, got {}".format( replace_stride_with_dilation)) self.groups = groups self.base_width = width_per_group bit = self.bits.pop(0) self.conv1 = DSConv2d( 3, self.inplanes, kernel_size=7, block_size=32, bit=bit, stride=2, padding=3, bias=False, ) self.bn1 = norm_layer(self.inplanes) self.relu = nn.ReLU(inplace=True) bit = self.bits[0] self.activation1 = BFPActivation(bit, 32) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2, dilate=replace_stride_with_dilation[0]) self.layer3 = self._make_layer(block, 256, layers[2], stride=2, dilate=replace_stride_with_dilation[1]) self.layer4 = self._make_layer( block, 512, layers[3], stride=2, dilate=replace_stride_with_dilation[2], final=True, ) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(512 * block.expansion, num_classes) for mod in self.modules(): if isinstance(mod, DSConv2d): nn.init.kaiming_normal_(mod.weight, mode="fan_out", nonlinearity="relu") elif isinstance(mod, (nn.BatchNorm2d, nn.GroupNorm)): nn.init.constant_(mod.weight, 1) nn.init.constant_(mod.bias, 0) # Zero-initialize the last BN in each residual branch, # so that the residual branch starts with zeros, # and each residual block behaves like an identity. # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677 if zero_init_residual: for mod in self.modules(): if isinstance(mod, Bottleneck): nn.init.constant_(mod.bn3.weight, 0) elif isinstance(mod, BasicBlock): nn.init.constant_(mod.bn2.weight, 0)