Пример #1
0
 def ValidateROI(self, ROI):
     return MI.ValidateROI(ROI, self.ImageShape())
Пример #2
0
    def Compute(self):

        sf.CheckCreateFolder(self.outFolder)

        logging.info(
            'NonAffMaps.Compute() started! Result will be saved in folder ' +
            str(self.outFolder))

        # Search for correlation map MIfiles, skip autocorrelation maps

        fw_mistack = self.cmaps_fw.GetCorrMaps(openMIfiles=True)
        bk_mistack = self.cmaps_bk.GetCorrMaps(openMIfiles=True)
        common_lags = list(
            set(fw_mistack.IdxList).intersection(bk_mistack.IdxList))
        if self.lag_range is None:
            if 0 in common_lags: common_lags.remove(0)
        else:
            if self.lag_range[1] < 0:
                self.lag_range[1] = np.max(common_lags) + 1
            common_lags = [
                lag for lag in common_lags
                if (lag != 0 and lag >= self.lag_range[0]
                    and lag <= self.lag_range[1])
            ]

        self.lagList = common_lags

        # Export configuration
        self.ExportConfiguration()

        if self.trans_bk_matrix is not None:
            tr_matrix = np.reshape(np.asarray(self.trans_bk_matrix), (2, 2))
            logging.debug(
                'Backscattered correlation maps will be transformed using matrix '
                + str(tr_matrix) + ' and offset ' + str(self.trans_bk_offset))

        # For each couple of correlation maps (with equal lagtime)
        for lidx in range(len(self.lagList)):

            logging.info('Now working on lagtime ' + str(lidx) + '/' +
                         str(len(self.lagList)) + ' (d' +
                         str(self.lagList[lidx]) + ')')

            fw_lidx = fw_mistack.IdxList.index(self.lagList[lidx])
            bk_lidx = bk_mistack.IdxList.index(self.lagList[lidx])

            # eventually compute normalization factors
            if self.norm_range is not None:
                fw_norm_factor = np.mean(fw_mistack.MIfiles[fw_lidx].Read(
                    zRange=self.norm_range[:2],
                    cropROI=self.norm_range[2:],
                    closeAfter=False))
                if self.trans_bk_matrix is None and self.trans_bk_offset is None:
                    bk_norm_factor = np.mean(bk_mistack.MIfiles[bk_lidx].Read(
                        zRange=self.norm_range[:2],
                        cropROI=self.norm_range[2:],
                        closeAfter=False))
                else:
                    bk_norm_data = bk_mistack.MIfiles[bk_lidx].Read(
                        zRange=self.norm_range[:2],
                        cropROI=None,
                        closeAfter=False)
                    if len(bk_norm_data.shape) > 2:
                        bk_norm_data = np.mean(bk_norm_data, axis=0)
                    logging.debug('shape before transformation: ' +
                                  str(bk_norm_data.shape))
                    bk_norm_data = sp.ndimage.affine_transform(bk_norm_data, tr_matrix, offset=self.trans_bk_offset,\
                                                      output_shape=bk_norm_data.shape, order=1, mode='constant', cval=1.0)
                    norm_cropROI = MI.ValidateROI(self.norm_range[2:],
                                                  bk_norm_data.shape,
                                                  replaceNone=True)
                    logging.debug('shape after transformation: ' +
                                  str(bk_norm_data.shape) +
                                  ' will be cropped with ROI ' +
                                  str(norm_cropROI))
                    bk_norm_factor = np.mean(bk_norm_data[norm_cropROI[1]:norm_cropROI[1]+norm_cropROI[3],\
                                                          norm_cropROI[0]:norm_cropROI[0]+norm_cropROI[2]])
                    bk_norm_data = None
            else:
                fw_norm_factor, bk_norm_factor = 1, 1

            logging.info('Normalization factors: ' + str(fw_norm_factor) +
                         ' (front) and ' + str(bk_norm_factor) + ' (back)')

            # load, normalize and eventually smooth correlation maps.
            fw_data = np.true_divide(
                fw_mistack.MIfiles[fw_lidx].Read(zRange=self.t_range,
                                                 cropROI=self.cropROI,
                                                 closeAfter=True),
                fw_norm_factor)
            bk_data = np.true_divide(
                bk_mistack.MIfiles[bk_lidx].Read(zRange=self.t_range,
                                                 cropROI=self.cropROI,
                                                 closeAfter=True),
                bk_norm_factor)

            if self.smooth_kernel_specs is not None:
                Kernel3D = self.LoadKernel(self.smooth_kernel_specs)
                logging.debug('Smoothing with kernel with shape ' +
                              str(Kernel3D.shape))
                fw_data = signal.convolve(fw_data, Kernel3D, mode='same')
                bk_data = signal.convolve(bk_data, Kernel3D, mode='same')

            # transform backscattered images
            if self.trans_bk_matrix is not None:
                tr_matrix3D = np.asarray(
                    [[1, 0, 0], [0, tr_matrix[0, 0], tr_matrix[0, 1]],
                     [0, tr_matrix[1, 0], tr_matrix[1, 1]]])
                tr_offset3D = np.asarray(
                    [0, self.trans_bk_offset[0], self.trans_bk_offset[1]])
                bk_data = sp.ndimage.affine_transform(bk_data, tr_matrix3D, offset=tr_offset3D,\
                                                      output_shape=fw_data.shape, order=1, mode='constant', cval=1.0)

            # sigma2 = ln(forward-scattering corr / backscattering corr) * 6 / (qz_bk^2 - qz_fw^2)
            sigma2 = np.log(np.true_divide(
                fw_data, bk_data)) * 6.0 / (self.qz_bk**2 - self.qz_fw**2)

            # For the first lagtime, generate and export metadata
            if (lidx == 0):
                out_meta = fw_mistack.MIfiles[fw_lidx].GetMetadata().copy()
                out_meta['hdr_len'] = 0
                out_meta['gap_bytes'] = 0
                out_meta['shape'] = list(sigma2.shape)
                if ('fps' in out_meta):
                    val_tRange = fw_mistack.MIfiles[fw_lidx].Validate_zRange(
                        self.t_range)
                    out_meta['fps'] = float(
                        out_meta['fps']) * 1.0 / val_tRange[2]
                exp_config = cf.Config()
                exp_config.Import(out_meta, section_name='MIfile')
                metadata_fname = os.path.join(self.outFolder,
                                              'NAffMap_metadata.ini')
                exp_config.Export(metadata_fname)
                logging.info('Metadata exported to file ' +
                             str(metadata_fname))

            # export data
            cur_fname = 'NaffMap_d' + str(self.lagList[lidx]).zfill(4) + '.dat'
            MI.MIfile(os.path.join(self.outFolder, cur_fname),
                      metadata_fname).WriteData(sigma2)

            logging.info('Result saved to file ' + str(cur_fname))

            fw_mistack.MIfiles[fw_lidx].Close()
            bk_mistack.MIfiles[bk_lidx].Close()