Пример #1
0
def eval_batch(data_iter,
               model,
               eval_instance,
               best_fscore,
               epoch,
               config,
               test=False):
    model.eval()
    # eval time
    eval_acc = Eval()
    eval_PRF = EvalPRF()
    gold_labels = []
    predict_labels = []
    for batch_features in data_iter:
        logit = model(batch_features)
        for id_batch in range(batch_features.batch_length):
            inst = batch_features.inst[id_batch]
            maxId_batch = getMaxindex_batch(logit[id_batch])
            predict_label = []
            for id_word in range(inst.words_size):
                predict_label.append(
                    config.create_alphabet.label_alphabet.from_id(
                        maxId_batch[id_word]))
            gold_labels.append(inst.labels)
            predict_labels.append(predict_label)
    for p_label, g_label in zip(predict_labels, gold_labels):
        eval_PRF.evalPRF(predict_labels=p_label,
                         gold_labels=g_label,
                         eval=eval_instance)
    if eval_acc.gold_num == 0:
        eval_acc.gold_num = 1
    p, r, f = eval_instance.getFscore()
    test_flag = "Test"
    if test is False:
        print()
        test_flag = "Dev"
        if f >= best_fscore.best_dev_fscore:
            best_fscore.best_dev_fscore = f
            best_fscore.best_epoch = epoch
            best_fscore.best_test = True
    if test is True and best_fscore.best_test is True:
        best_fscore.p = p
        best_fscore.r = r
        best_fscore.f = f
    print(
        "{} eval: precision = {:.6f}%  recall = {:.6f}% , f-score = {:.6f}%,  [TAG-ACC = {:.6f}%]"
        .format(test_flag, p, r, f, eval_acc.acc()))
    if test is True:
        print(
            "The Current Best Dev F-score: {:.6f}, Locate on {} Epoch.".format(
                best_fscore.best_dev_fscore, best_fscore.best_epoch))
        print(
            "The Current Best Test Result: precision = {:.6f}%  recall = {:.6f}% , f-score = {:.6f}%"
            .format(best_fscore.p, best_fscore.r, best_fscore.f))
    if test is True:
        best_fscore.best_test = False
 def eval_batch(self,
                data_iter,
                model,
                eval_instance,
                best_score,
                epoch,
                config,
                test=False):
     """
     :param data_iter:  eval batch data iterator
     :param model: eval model
     :param eval_instance:
     :param best_score:
     :param epoch:
     :param config: config
     :param test:  whether to test
     :return: None
     """
     model.eval()
     # eval time
     eval_acc = Eval()
     eval_PRF = EvalPRF()
     gold_labels = []
     predict_labels = []
     for batch_features in data_iter:
         word, char, mask, sentence_length, tags = self._get_model_args(
             batch_features)
         logit = model(word, char, sentence_length, train=False)
         if self.use_crf is False:
             predict_ids = torch_max(logit)
             for id_batch in range(batch_features.batch_length):
                 inst = batch_features.inst[id_batch]
                 label_ids = predict_ids[id_batch]
                 predict_label = []
                 for id_word in range(inst.words_size):
                     predict_label.append(
                         config.create_alphabet.label_alphabet.from_id(
                             label_ids[id_word]))
                 gold_labels.append(inst.labels)
                 predict_labels.append(predict_label)
         else:
             path_score, best_paths = model.crf_layer(logit, mask)
             for id_batch in range(batch_features.batch_length):
                 inst = batch_features.inst[id_batch]
                 gold_labels.append(inst.labels)
                 label_ids = best_paths[id_batch].cpu().data.numpy(
                 )[:inst.words_size]
                 label = []
                 for i in label_ids:
                     label.append(
                         config.create_alphabet.label_alphabet.from_id(i))
                 predict_labels.append(label)
     for p_label, g_label in zip(predict_labels, gold_labels):
         eval_PRF.evalPRF(predict_labels=p_label,
                          gold_labels=g_label,
                          eval=eval_instance)
     if eval_acc.gold_num == 0:
         eval_acc.gold_num = 1
     p, r, f = eval_instance.getFscore()
     # p, r, f = entity_evalPRF_exact(gold_labels=gold_labels, predict_labels=predict_labels)
     # p, r, f = entity_evalPRF_propor(gold_labels=gold_labels, predict_labels=predict_labels)
     # p, r, f = entity_evalPRF_binary(gold_labels=gold_labels, predict_labels=predict_labels)
     test_flag = "Test"
     if test is False:
         print()
         test_flag = "Dev"
         best_score.current_dev_score = f
         if f >= best_score.best_dev_score:
             best_score.best_dev_score = f
             best_score.best_epoch = epoch
             best_score.best_test = True
     if test is True and best_score.best_test is True:
         best_score.p = p
         best_score.r = r
         best_score.f = f
     print(
         "{} eval: precision = {:.6f}%  recall = {:.6f}% , f-score = {:.6f}%,  [TAG-ACC = {:.6f}%]"
         .format(test_flag, p, r, f, 0.0000))
     if test is True:
         print("The Current Best Dev F-score: {:.6f}, Locate on {} Epoch.".
               format(best_score.best_dev_score, best_score.best_epoch))
         print(
             "The Current Best Test Result: precision = {:.6f}%  recall = {:.6f}% , f-score = {:.6f}%"
             .format(best_score.p, best_score.r, best_score.f))
     if test is True:
         best_score.best_test = False