Пример #1
0
 def extract_rtp_known_state(self, path_list):
     healthy_x = []
     healthy_y = []
     healthy_bs = []
     healthy_new_stroke = []
     disease_x = []
     disease_y = []
     disease_bs = []
     disease_new_stroke = []
     states = []
     for path in path_list:
         # Acuqisisco l'id del paziente
         id = HandManager.get_id_from_path(path)
         # Acquisisco lo stato del paziente
         state = HandManager.get_state_from_id(id)
         # Leggo i punti campionati nel file
         partial_x, partial_y, partial_bs = RTPExtraction.__read_samples_from_file(
             path)
         # Trasformo i punti in segmenti RHS.
         partial_x, partial_y, partial_bs = self.__transform_point_in_rtp(
             partial_x, partial_y, partial_bs)
         partial_new_stroke = RTPExtraction.__get_new_stroke(partial_bs)
         # Raddoppio il numero dei campioni RHS così da ampliare il dataset.
         partial_x, partial_y, partial_bs, partial_new_stroke = self.__extract_subs_from_samples(
             partial_x, partial_y, partial_bs, partial_new_stroke)
         # Suddivido i capioni in base allo stato di salute del paziente a cui appartengono, dopo di che genero degli
         # array mono dimensionali di lunghezza pari alla lunghezza dei campioni richiesta dal Modello.
         if state == HEALTHY_STATE:
             self.__create_sample_sequence(healthy_x, healthy_y, healthy_bs,
                                           healthy_new_stroke, partial_x,
                                           partial_y, partial_bs,
                                           partial_new_stroke)
         else:
             self.__create_sample_sequence(disease_x, disease_y, disease_bs,
                                           disease_new_stroke, partial_x,
                                           partial_y, partial_bs,
                                           partial_new_stroke)
     # Dopo aver ultimato l'estrazione genero due tensori tridimensionali, uno per i pazienti sani e uno per i pazienti malati
     healthy_tensor = np.reshape(
         np.array(healthy_x + healthy_y + healthy_bs + healthy_new_stroke),
         (len(healthy_x), self.__num_samples, FEATURES))
     disease_tensor = np.reshape(
         np.array(disease_x + disease_y + disease_bs + disease_new_stroke),
         (len(disease_x), self.__num_samples, FEATURES))
     # A questo punto per ottenere un dataset bilanciato in ogni situazione valuto quale dei due tensori possiede meno.
     healthy_tensor, disease_tensor = HandManager.balance_dataset(
         healthy_tensor, disease_tensor)
     # Il tensore con meno campioni verrà utilizzato per generare il tensore finale, il quale verrà composto inserendo
     # prima tutti gli utenti sani e poi tutti gli utenti sani, si è già provato un approccio alternato, ma ha dato
     # scarsi risultati.
     final_tensor = np.concatenate((healthy_tensor, disease_tensor))
     # Genero infine il vettore gli stati
     states += [HEALTHY_STATE for _ in range(len(healthy_tensor))
                ] + [DISEASE_STATE for _ in range(len(disease_tensor))]
     return np.array(final_tensor), np.array(states), len(final_tensor)
 def get_task_from_paths(paths, tasks):
     ids_task = {}
     for path in paths:
         id = HandManager.get_id_from_path(path)
         task = "_" + HandManager.get_task_from_path(path) + "."
         if task in tasks:
             if id in ids_task:
                 temp_path = ids_task[id]
                 temp_path.append(path)
                 ids_task.update({id: temp_path})
             else:
                 ids_task[id] = [path]
     return ids_task
Пример #3
0
 def extract_rhs_file(self, path):
     x_samples = []
     y_samples = []
     bs_samples = []
     id = HandManager.get_id_from_path(path)
     state = HandManager.get_state_from_id(id)
     partial_x, partial_y, partial_bs = RHSDistanceExtract.read_samples_from_file(path)
     partial_x, partial_y, partial_bs = self.__transform_point_in_rhs(partial_x, partial_y, partial_bs)
     partial_x, partial_y, partial_bs = self.__extract_subs_from_samples(partial_x, partial_y, partial_bs)
     self.__create_sample_sequence(x_samples, y_samples, bs_samples, partial_x, partial_y, partial_bs)
     tensor = np.reshape((x_samples + y_samples + bs_samples), (len(x_samples), self.__num_samples, FEATURES))
     states = [state for _ in range(len(x_samples))]
     return np.array(tensor), np.array(states)
 def execute_emothaw_experiment(self):
     file_manager = HandManager("ConvertedEmothaw")
     rhs_extraction = RHSDistanceExtract(self.__file_samples, NUM_FILE_SAMPLES)
     ids_task = TaskManager.get_task_from_paths(file_manager.get_files_path(), self.__test_task)
     for id in ids_task:
         paths = ids_task.get(id)
         for task_path in paths:
             tensor = rhs_extraction.extract_rhs_file(task_path)
             result = self.__ml_model.predict_result(tensor)
             counter_result = Counter(result)
             print("Id: ", id, "file: ", task_path)
             healthy = counter_result.get(0) / len(result) * 100
             print("Healthy: ", healthy, "%")
             print("Disease: ", 100 - healthy, "%")
Пример #5
0
 def start_experiment(self):
     print("Leave one out experiment start.")
     feature_extraction = RHSDistanceExtract(MINIMUM_SAMPLES, SAMPLES)
     global_results = np.zeros(0)
     global_states = np.zeros(0)
     for test_id in self.__patients:
         print("Test id: ", test_id)
         print("Deleting test file...")
         deleted_paths = HandManager.delete_files(test_id, self.__patients_paths)
         validation_number = int(np.ceil(len(deleted_paths) * 0.20))
         training_file = deleted_paths[0: len(deleted_paths) - validation_number]
         validation_file = deleted_paths[len(deleted_paths) - validation_number: len(deleted_paths)]
         test_file = HandManager.get_all_file_of_id(test_id, self.__patients_paths)
         print("Creating training tensor...")
         training_tensor, training_states, _ = feature_extraction.extract_rhs_known_state(training_file)
         print("Creating validation tensor...")
         validation_tensor, validation_states, _ = feature_extraction.extract_rhs_known_state(validation_file)
         test_tensor = np.zeros((0, SAMPLES * 2, FEATURES))
         test_states = np.zeros(0)
         print("Creating test tensor...")
         for file in test_file:
             partial_tensor, partial_states = feature_extraction.extract_rhs_file(file)
             test_tensor = np.concatenate((test_tensor, partial_tensor))
             test_states = np.concatenate((test_states, test_states))
         print("Creating model...")
         ml_model = MLModel(training_tensor, training_states, validation_tensor, validation_states)
         print("Testing model...")
         partial_results, _, _ = ml_model.test_model(test_tensor, test_states)
         accuracy, _ = MLModel.get_accuracy_precision(partial_results, test_states)
         print("Accuracy: ", accuracy)
         print("Update results...")
         global_results = np.concatenate((global_results, partial_results))
         global_states = np.concatenate((global_states, test_states))
     with open(os.path.join(EXPERIMENT_RESULT, "experiment_5.txt"), 'w') as file:
         accuracy, precision, recall, f_score = MLModel.evaluate_results(global_results, global_states)
         file.write("LEAVE ONE OUT EXPERIMENT:\n")
         file.write("ACCURACY: " + str(accuracy * 100) + "\n")
         file.write("PRECISION: " + str(precision * 100) + "\n")
         file.write("RECALL: " + str(recall * 100) + "\n")
         file.write("F_SCORE: " + str(f_score * 100) + "\n")
         file.close()
Пример #6
0
 def __init__(self, dataset):
     self.__dataset = dataset
     dataset = HandManager(self.__dataset)
     self.__patients_paths = dataset.get_files_path()
     self.__patients_paths = HandManager.filter_file(self.__patients_paths, MINIMUM_SAMPLES)
     self.__patients = HandManager.get_ids_from_dir(dataset.get_patient_paths())
     self.__patients.sort()
Пример #7
0
 def rtp(self, path):
     x_samples = []
     y_samples = []
     bs_samples = []
     new_stroke_samples = []
     id = HandManager.get_id_from_path(path)
     state = HandManager.get_state_from_id(id)
     partial_x, partial_y, partial_bs = RTPExtraction.__read_samples_from_file(
         path)
     partial_x, partial_y, partial_bs = self.__transform_point_in_rtp(
         partial_x, partial_y, partial_bs)
     partial_new_stroke = RTPExtraction.__get_new_stroke(partial_bs)
     partial_x, partial_y, partial_bs, partial_new_stroke = self.__extract_subs_from_samples(
         partial_x, partial_y, partial_bs, partial_new_stroke)
     self.__create_sample_sequence(x_samples, y_samples, bs_samples,
                                   new_stroke_samples, partial_x, partial_y,
                                   partial_bs, partial_new_stroke)
     tensor = np.reshape(
         (x_samples + y_samples + bs_samples + new_stroke_samples),
         (len(x_samples), self.__num_samples, FEATURES))
     states = [state for _ in range(len(x_samples))]
     return np.array(tensor), np.array(states)
 def get_task_files(tasks, paths):
     task_paths = []
     try:
         if not isinstance(tasks, list):
             tasks = [tasks]
         for task in tasks:
             for path in paths:
                 if task in '_' + HandManager.get_task_from_path(
                         path) + '.':
                     task_paths.append(path)
     except TypeError as error:
         print("Error: ", error)
         print("Task: ", tasks)
     return task_paths
 def split(paths, healthy_task, diseased_task, test_task, training_number,
           validation_number):
     # Ottengo le liste degli id dei pazienti selezionati per eseguire le varie di modellazione, distinguendo tra id
     # di pazienti sani e malati.
     listh_training, listh_validation, listh_test, listd_training, listd_validation, listd_test = TaskManager.__split(
         training_number, validation_number)
     training_list_diseased = []
     training_list_healthy = []
     test_list_healthy = []
     test_list_diseased = []
     validation_list_diseased = []
     validation_list_healthy = []
     # In questo for vengono individuati dati path del sistema tutti i tasks che sono stati selezionati per la modellazione
     # se il tasks si identifica come uno dei tasks richiesti allora si verifica l'id a cui il tasks appartiene per essere
     # correttamente smistato nella lista di appartenenza corretta.
     for path in paths:
         id = HandManager.get_id_from_path(path)
         task = "_" + HandManager.get_task_from_path(path) + "."
         # Verifico se il tasks nel path è uno di quelli selezionati per i pazienti con malattia.
         if task in diseased_task:
             # Verifico se l'id del paziente è presente nella lista dei pazienti con malattia.
             training_list_diseased, validation_list_diseased = TaskManager.__id_in_list(
                 id, path, listd_training, listd_validation,
                 training_list_diseased, validation_list_diseased)
         # In questo if si verificano i tasks per i pazienti considerati sani
         if task in healthy_task:
             training_list_healthy, validation_list_healthy = TaskManager.__id_in_list(
                 id, path, listh_training, listh_validation,
                 training_list_healthy, validation_list_healthy)
         # In questo if si verificano i tasks selezionati per i test
         if task in test_task:
             if id in listh_test:
                 test_list_healthy.append(path)
             elif id in listd_test:
                 test_list_diseased.append(path)
     return training_list_diseased, training_list_healthy, test_list_healthy, test_list_diseased, \
         validation_list_diseased, validation_list_healthy
 def __split(training_numbers, validation_numbers):
     # Ottengo le liste degli id dei pazienti sani e malati.
     healthy_id, diseased_id = HandManager.get_healthy_disease_list()
     # h => healthy, d => diseased
     # Separo il dataset tra training src e validazione a seconda della condizione dei pazienti.
     h_ids_training = healthy_id[0:training_numbers]
     h_ids_validation = healthy_id[training_numbers:training_numbers +
                                   validation_numbers]
     h_ids_test = healthy_id[training_numbers +
                             validation_numbers:len(healthy_id)]
     d_ids_training = diseased_id[0:training_numbers]
     d_ids_validation = diseased_id[training_numbers:training_numbers +
                                    validation_numbers]
     d_ids_test = diseased_id[training_numbers +
                              validation_numbers:len(diseased_id)]
     return h_ids_training, h_ids_validation, h_ids_test, d_ids_training, d_ids_validation, d_ids_test
Пример #11
0
 def read_samples_from_file(path):
     partial_x = []
     partial_y = []
     partial_bs = []
     timestamp = []
     with open(path, newline='') as csv_file:
         # Leggo il file di campioni come fosse un file csv con delimitatore di colonna indicato da uno spazio, anziché
         # una virgola.
         rows = csv.reader(csv_file, delimiter=' ')
         for row in rows:
             partial_x.append(float(row[X_COORDINATE]))
             partial_y.append(float(row[Y_COORDINATE]))
             partial_bs.append(float(row[BOTTOM_STATUS]))
             timestamp.append(float(row[TIMESTAMP]))
         csv_file.close()
     # Elimino i duplicati dalle lista.
     partial_x, partial_y, timestamp, partial_bs = HandManager.delete_duplicates(partial_x,
                                                                                 partial_y, timestamp, partial_bs)
     return np.array(partial_x).astype(float), np.array(partial_y).astype(float), np.array(partial_bs).astype(float)