Пример #1
0
def MIND(user_feature_columns,
         item_feature_columns,
         num_sampled=5,
         k_max=2,
         p=1.0,
         dynamic_k=False,
         user_dnn_hidden_units=(64, 32),
         dnn_activation='relu',
         dnn_use_bn=False,
         l2_reg_dnn=0,
         l2_reg_embedding=1e-6,
         dnn_dropout=0,
         init_std=0.0001,
         seed=1024):
    """Instantiates the MIND Model architecture.

    :param user_feature_columns: An iterable containing user's features used by  the model.
    :param item_feature_columns: An iterable containing item's features used by  the model.
    :param num_sampled: int, the number of classes to randomly sample per batch.
    :param k_max: int, the max size of user interest embedding
    :param p: float,the parameter for adjusting the attention distribution in LabelAwareAttention.
    :param dynamic_k: bool, whether or not use dynamic interest number
    :param dnn_use_bn: bool. Whether use BatchNormalization before activation or not in deep net
    :param user_dnn_hidden_units: list,list of positive integer or empty list, the layer number and units in each layer of user tower
    :param dnn_activation: Activation function to use in deep net
    :param dnn_use_bn: bool. Whether use BatchNormalization before activation or not in deep net
    :param l2_reg_dnn:  L2 regularizer strength applied to DNN
    :param l2_reg_embedding: float. L2 regularizer strength applied to embedding vector
    :param dnn_dropout:  float in [0,1), the probability we will drop out a given DNN coordinate.
    :param init_std: float,to use as the initialize std of embedding vector
    :param seed: integer ,to use as random seed.
    :return: A Keras model instance.

    """

    if len(item_feature_columns) > 1:
        raise ValueError("Now MIND only support 1 item feature like item_id")
    item_feature_column = item_feature_columns[0]
    item_feature_name = item_feature_column.name
    item_vocabulary_size = item_feature_columns[0].vocabulary_size
    item_embedding_dim = item_feature_columns[0].embedding_dim
    # item_index = Input(tensor=tf.constant([list(range(item_vocabulary_size))]))

    history_feature_list = [item_feature_name]

    features = build_input_features(user_feature_columns)
    sparse_feature_columns = list(
        filter(lambda x: isinstance(x, SparseFeat),
               user_feature_columns)) if user_feature_columns else []
    dense_feature_columns = list(
        filter(lambda x: isinstance(x, DenseFeat),
               user_feature_columns)) if user_feature_columns else []
    varlen_sparse_feature_columns = list(
        filter(lambda x: isinstance(x, VarLenSparseFeat),
               user_feature_columns)) if user_feature_columns else []
    history_feature_columns = []
    sparse_varlen_feature_columns = []
    history_fc_names = list(map(lambda x: "hist_" + x, history_feature_list))
    for fc in varlen_sparse_feature_columns:
        feature_name = fc.name
        if feature_name in history_fc_names:
            history_feature_columns.append(fc)
        else:
            sparse_varlen_feature_columns.append(fc)
    seq_max_len = history_feature_columns[0].maxlen
    inputs_list = list(features.values())

    embedding_matrix_dict = create_embedding_matrix(user_feature_columns +
                                                    item_feature_columns,
                                                    l2_reg_embedding,
                                                    init_std,
                                                    seed,
                                                    prefix="")

    item_features = build_input_features(item_feature_columns)

    query_emb_list = embedding_lookup(embedding_matrix_dict,
                                      item_features,
                                      item_feature_columns,
                                      history_feature_list,
                                      history_feature_list,
                                      to_list=True)
    keys_emb_list = embedding_lookup(embedding_matrix_dict,
                                     features,
                                     history_feature_columns,
                                     history_fc_names,
                                     history_fc_names,
                                     to_list=True)
    dnn_input_emb_list = embedding_lookup(embedding_matrix_dict,
                                          features,
                                          sparse_feature_columns,
                                          mask_feat_list=history_feature_list,
                                          to_list=True)
    dense_value_list = get_dense_input(features, dense_feature_columns)

    sequence_embed_dict = varlen_embedding_lookup(
        embedding_matrix_dict, features, sparse_varlen_feature_columns)
    sequence_embed_list = get_varlen_pooling_list(
        sequence_embed_dict,
        features,
        sparse_varlen_feature_columns,
        to_list=True)

    dnn_input_emb_list += sequence_embed_list

    # keys_emb = concat_func(keys_emb_list, mask=True)
    # query_emb = concat_func(query_emb_list, mask=True)

    history_emb = PoolingLayer()(NoMask()(keys_emb_list))
    target_emb = PoolingLayer()(NoMask()(query_emb_list))

    # target_emb_size = target_emb.get_shape()[-1].value
    # max_len = history_emb.get_shape()[1].value
    hist_len = features['hist_len']

    high_capsule = CapsuleLayer(input_units=item_embedding_dim,
                                out_units=item_embedding_dim,
                                max_len=seq_max_len,
                                k_max=k_max)((history_emb, hist_len))

    if len(dnn_input_emb_list) > 0 or len(dense_value_list) > 0:
        user_other_feature = combined_dnn_input(dnn_input_emb_list,
                                                dense_value_list)

        other_feature_tile = tf.keras.layers.Lambda(
            tile_user_otherfeat, arguments={'k_max':
                                            k_max})(user_other_feature)

        user_deep_input = Concatenate()(
            [NoMask()(other_feature_tile), high_capsule])
    else:
        user_deep_input = high_capsule

    user_embeddings = DNN(user_dnn_hidden_units,
                          dnn_activation,
                          l2_reg_dnn,
                          dnn_dropout,
                          dnn_use_bn,
                          seed,
                          name="user_embedding")(user_deep_input)
    item_inputs_list = list(item_features.values())

    item_embedding_matrix = embedding_matrix_dict[item_feature_name]

    item_index = EmbeddingIndex(list(range(item_vocabulary_size)))(
        item_features[item_feature_name])

    item_embedding_weight = NoMask()(item_embedding_matrix(item_index))

    pooling_item_embedding_weight = PoolingLayer()([item_embedding_weight])

    if dynamic_k:
        user_embedding_final = LabelAwareAttention(
            k_max=k_max,
            pow_p=p,
        )((user_embeddings, target_emb, hist_len))
    else:
        user_embedding_final = LabelAwareAttention(
            k_max=k_max,
            pow_p=p,
        )((user_embeddings, target_emb))

    output = SampledSoftmaxLayer(num_sampled=num_sampled)([
        pooling_item_embedding_weight, user_embedding_final,
        item_features[item_feature_name]
    ])
    model = Model(inputs=inputs_list + item_inputs_list, outputs=output)

    model.__setattr__("user_input", inputs_list)
    model.__setattr__("user_embedding", user_embeddings)

    model.__setattr__("item_input", item_inputs_list)
    model.__setattr__(
        "item_embedding",
        get_item_embedding(pooling_item_embedding_weight,
                           item_features[item_feature_name]))

    return model
Пример #2
0
def FM(user_feature_columns,
       item_feature_columns,
       l2_reg_embedding=1e-6,
       init_std=0.0001,
       seed=1024,
       metric='cos'):
    """Instantiates the FM architecture.

    :param user_feature_columns: An iterable containing user's features used by  the model.
    :param item_feature_columns: An iterable containing item's features used by  the model.
    :param l2_reg_embedding: float. L2 regularizer strength applied to embedding vector
    :param init_std: float,to use as the initialize std of embedding vector
    :param seed: integer ,to use as random seed.
    :param metric: str, ``"cos"`` for  cosine  or  ``"ip"`` for inner product
    :return: A Keras model instance.

    """

    embedding_matrix_dict = create_embedding_matrix(user_feature_columns +
                                                    item_feature_columns,
                                                    l2_reg_embedding,
                                                    init_std,
                                                    seed,
                                                    seq_mask_zero=True)

    user_features = build_input_features(user_feature_columns)
    user_inputs_list = list(user_features.values())
    user_sparse_embedding_list, user_dense_value_list = input_from_feature_columns(
        user_features,
        user_feature_columns,
        l2_reg_embedding,
        init_std,
        seed,
        support_dense=False,
        embedding_matrix_dict=embedding_matrix_dict)

    item_features = build_input_features(item_feature_columns)
    item_inputs_list = list(item_features.values())
    item_sparse_embedding_list, item_dense_value_list = input_from_feature_columns(
        item_features,
        item_feature_columns,
        l2_reg_embedding,
        init_std,
        seed,
        support_dense=False,
        embedding_matrix_dict=embedding_matrix_dict)

    user_dnn_input = concat_func(user_sparse_embedding_list, axis=1)
    user_vector_sum = Lambda(lambda x: reduce_sum(x, axis=1, keep_dims=False))(
        user_dnn_input)

    item_dnn_input = concat_func(item_sparse_embedding_list, axis=1)
    item_vector_sum = Lambda(lambda x: reduce_sum(x, axis=1, keep_dims=False))(
        item_dnn_input)

    score = Similarity(type=metric)([user_vector_sum, item_vector_sum])

    output = PredictionLayer("binary", False)(score)

    model = Model(inputs=user_inputs_list + item_inputs_list, outputs=output)

    model.__setattr__("user_input", user_inputs_list)
    model.__setattr__("user_embedding", user_vector_sum)

    model.__setattr__("item_input", item_inputs_list)
    model.__setattr__("item_embedding", item_vector_sum)

    return model
Пример #3
0
def DSSM(user_feature_columns,
         item_feature_columns,
         user_dnn_hidden_units=(64, 32),
         item_dnn_hidden_units=(64, 32),
         dnn_activation='tanh',
         dnn_use_bn=False,
         l2_reg_dnn=0,
         l2_reg_embedding=1e-6,
         dnn_dropout=0,
         init_std=0.0001,
         seed=1024,
         metric='cos'):
    """Instantiates the Deep Structured Semantic Model architecture.

    :param user_feature_columns: An iterable containing user's features used by  the model.
    :param item_feature_columns: An iterable containing item's features used by  the model.
    :param user_dnn_hidden_units: list,list of positive integer or empty list, the layer number and units in each layer of user tower
    :param item_dnn_hidden_units: list,list of positive integer or empty list, the layer number and units in each layer of item tower
    :param dnn_activation: Activation function to use in deep net
    :param dnn_use_bn: bool. Whether use BatchNormalization before activation or not in deep net
    :param l2_reg_dnn: float. L2 regularizer strength applied to DNN
    :param l2_reg_embedding: float. L2 regularizer strength applied to embedding vector
    :param dnn_dropout: float in [0,1), the probability we will drop out a given DNN coordinate.
    :param init_std: float,to use as the initialize std of embedding vector
    :param seed: integer ,to use as random seed.
    :param metric: str, ``"cos"`` for  cosine  or  ``"ip"`` for inner product
    :return: A Keras model instance.

    """

    embedding_matrix_dict = create_embedding_matrix(user_feature_columns +
                                                    item_feature_columns,
                                                    l2_reg_embedding,
                                                    init_std,
                                                    seed,
                                                    seq_mask_zero=True)

    user_features = build_input_features(user_feature_columns)
    user_inputs_list = list(user_features.values())
    user_sparse_embedding_list, user_dense_value_list = input_from_feature_columns(
        user_features,
        user_feature_columns,
        l2_reg_embedding,
        init_std,
        seed,
        embedding_matrix_dict=embedding_matrix_dict)
    user_dnn_input = combined_dnn_input(user_sparse_embedding_list,
                                        user_dense_value_list)

    item_features = build_input_features(item_feature_columns)
    item_inputs_list = list(item_features.values())
    item_sparse_embedding_list, item_dense_value_list = input_from_feature_columns(
        item_features,
        item_feature_columns,
        l2_reg_embedding,
        init_std,
        seed,
        embedding_matrix_dict=embedding_matrix_dict)
    item_dnn_input = combined_dnn_input(item_sparse_embedding_list,
                                        item_dense_value_list)

    user_dnn_out = DNN(
        user_dnn_hidden_units,
        dnn_activation,
        l2_reg_dnn,
        dnn_dropout,
        dnn_use_bn,
        seed,
    )(user_dnn_input)

    item_dnn_out = DNN(item_dnn_hidden_units, dnn_activation, l2_reg_dnn,
                       dnn_dropout, dnn_use_bn, seed)(item_dnn_input)

    score = Similarity(type=metric)([user_dnn_out, item_dnn_out])

    output = PredictionLayer("binary", False)(score)

    model = Model(inputs=user_inputs_list + item_inputs_list, outputs=output)

    model.__setattr__("user_input", user_inputs_list)
    model.__setattr__("item_input", item_inputs_list)
    model.__setattr__("user_embedding", user_dnn_out)
    model.__setattr__("item_embedding", item_dnn_out)

    return model
Пример #4
0
def NCF(user_feature_columns,
        item_feature_columns,
        user_gmf_embedding_dim=20,
        item_gmf_embedding_dim=20,
        user_mlp_embedding_dim=20,
        item_mlp_embedding_dim=20,
        dnn_use_bn=False,
        dnn_hidden_units=(64, 32),
        dnn_activation='relu',
        l2_reg_dnn=0,
        l2_reg_embedding=1e-6,
        dnn_dropout=0,
        init_std=0.0001,
        seed=1024):
    """Instantiates the NCF Model architecture.

    :param user_feature_columns: A dict containing user's features and features'dim.
    :param item_feature_columns: A dict containing item's features and features'dim.
    :param user_gmf_embedding_dim: int.
    :param item_gmf_embedding_dim: int.
    :param user_mlp_embedding_dim: int.
    :param item_mlp_embedding_dim: int.
    :param dnn_use_bn: bool. Whether use BatchNormalization before activation or not in deep net
    :param dnn_hidden_units: list,list of positive integer or empty list, the layer number and units in each layer of deep net
    :param dnn_activation: Activation function to use in deep net
    :param l2_reg_dnn: float. L2 regularizer strength applied to DNN
    :param l2_reg_embedding: float. L2 regularizer strength applied to embedding vector
    :param dnn_dropout: float in [0,1), the probability we will drop out a given DNN coordinate.
    :param init_std: float,to use as the initialize std of embedding vector
    :param seed: integer ,to use as random seed.
    :return: A Keras model instance.

    """

    user_dim = len(user_feature_columns) * user_gmf_embedding_dim
    item_dim = len(item_feature_columns) * item_gmf_embedding_dim
    dim = (user_dim * item_dim) / (math.gcd(user_dim, item_dim))
    user_gmf_embedding_dim = int(dim / len(user_feature_columns))
    item_gmf_embedding_dim = int(dim / len(item_feature_columns))

    # Generalized Matrix Factorization (GMF) Part
    user_gmf_feature_columns = [
        SparseFeat(feat,
                   vocabulary_size=size,
                   embedding_dim=user_gmf_embedding_dim)
        for feat, size in user_feature_columns.items()
    ]
    user_features = build_input_features(user_gmf_feature_columns)
    user_inputs_list = list(user_features.values())
    user_gmf_sparse_embedding_list, user_gmf_dense_value_list = input_from_feature_columns(
        user_features,
        user_gmf_feature_columns,
        l2_reg_embedding,
        init_std,
        seed,
        prefix='gmf_')
    user_gmf_input = combined_dnn_input(user_gmf_sparse_embedding_list, [])
    user_gmf_out = Lambda(lambda x: x,
                          name="user_gmf_embedding")(user_gmf_input)

    item_gmf_feature_columns = [
        SparseFeat(feat,
                   vocabulary_size=size,
                   embedding_dim=item_gmf_embedding_dim)
        for feat, size in item_feature_columns.items()
    ]
    item_features = build_input_features(item_gmf_feature_columns)
    item_inputs_list = list(item_features.values())
    item_gmf_sparse_embedding_list, item_gmf_dense_value_list = input_from_feature_columns(
        item_features,
        item_gmf_feature_columns,
        l2_reg_embedding,
        init_std,
        seed,
        prefix='gmf_')
    item_gmf_input = combined_dnn_input(item_gmf_sparse_embedding_list, [])
    item_gmf_out = Lambda(lambda x: x,
                          name="item_gmf_embedding")(item_gmf_input)

    gmf_out = Multiply()([user_gmf_out, item_gmf_out])

    # Multi-Layer Perceptron (MLP) Part
    user_mlp_feature_columns = [
        SparseFeat(feat,
                   vocabulary_size=size,
                   embedding_dim=user_mlp_embedding_dim)
        for feat, size in user_feature_columns.items()
    ]
    user_mlp_sparse_embedding_list, user_mlp_dense_value_list = input_from_feature_columns(
        user_features,
        user_mlp_feature_columns,
        l2_reg_embedding,
        init_std,
        seed,
        prefix='mlp_')
    user_mlp_input = combined_dnn_input(user_mlp_sparse_embedding_list,
                                        user_mlp_dense_value_list)
    user_mlp_out = Lambda(lambda x: x,
                          name="user_mlp_embedding")(user_mlp_input)

    item_mlp_feature_columns = [
        SparseFeat(feat,
                   vocabulary_size=size,
                   embedding_dim=item_mlp_embedding_dim)
        for feat, size in item_feature_columns.items()
    ]

    item_mlp_sparse_embedding_list, item_mlp_dense_value_list = input_from_feature_columns(
        item_features,
        item_mlp_feature_columns,
        l2_reg_embedding,
        init_std,
        seed,
        prefix='mlp_')
    item_mlp_input = combined_dnn_input(item_mlp_sparse_embedding_list,
                                        item_mlp_dense_value_list)
    item_mlp_out = Lambda(lambda x: x,
                          name="item_mlp_embedding")(item_mlp_input)

    mlp_input = Concatenate(axis=1)([user_mlp_out, item_mlp_out])
    mlp_out = DNN(dnn_hidden_units,
                  dnn_activation,
                  l2_reg_dnn,
                  dnn_dropout,
                  dnn_use_bn,
                  seed,
                  name="mlp_embedding")(mlp_input)

    # Fusion of GMF and MLP
    neumf_input = Concatenate(axis=1)([gmf_out, mlp_out])
    neumf_out = DNN(hidden_units=[1], activation='sigmoid')(neumf_input)
    output = Lambda(lambda x: x, name='neumf_out')(neumf_out)

    # output = PredictionLayer(task, False)(neumf_out)

    model = Model(inputs=user_inputs_list + item_inputs_list, outputs=output)

    return model
Пример #5
0
def SDM(user_feature_columns,
        item_feature_columns,
        history_feature_list,
        num_sampled=5,
        units=64,
        rnn_layers=2,
        dropout_rate=0.2,
        rnn_num_res=1,
        num_head=4,
        l2_reg_embedding=1e-6,
        dnn_activation='tanh',
        init_std=0.0001,
        seed=1024):
    """Instantiates the Sequential Deep Matching Model architecture.

    :param user_feature_columns: An iterable containing user's features used by  the model.
    :param item_feature_columns: An iterable containing item's features used by  the model.
    :param history_feature_list: list,to indicate short and prefer sequence sparse field
    :param num_sampled: int, the number of classes to randomly sample per batch.
    :param units: int, dimension for each output layer
    :param rnn_layers: int, layer number of rnn
    :param dropout_rate: float in [0,1), the probability we will drop out a given DNN coordinate.
    :param rnn_num_res: int. The number of residual layers in rnn layers
    :param num_head: int int, the number of attention head
    :param l2_reg_embedding: float. L2 regularizer strength applied to embedding vector
    :param dnn_activation: Activation function to use in deep net
    :param init_std: float,to use as the initialize std of embedding vector
    :param seed: integer ,to use as random seed.
    :return: A Keras model instance.

    """

    if len(item_feature_columns) > 1:
        raise ValueError("Now MIND only support 1 item feature like item_id")
    item_feature_column = item_feature_columns[0]
    item_feature_name = item_feature_column.name
    item_vocabulary_size = item_feature_columns[0].vocabulary_size

    features = build_input_features(user_feature_columns)

    user_inputs_list = list(features.values())

    sparse_feature_columns = list(
        filter(lambda x: isinstance(x, SparseFeat),
               user_feature_columns)) if user_feature_columns else []
    dense_feature_columns = list(
        filter(lambda x: isinstance(x, DenseFeat),
               user_feature_columns)) if user_feature_columns else []
    if len(dense_feature_columns) != 0:
        raise ValueError("Now SDM don't support dense feature")
    varlen_sparse_feature_columns = list(
        filter(lambda x: isinstance(x, VarLenSparseFeat),
               user_feature_columns)) if user_feature_columns else []

    sparse_varlen_feature_columns = []
    prefer_history_columns = []
    short_history_columns = []

    prefer_fc_names = list(map(lambda x: "prefer_" + x, history_feature_list))
    short_fc_names = list(map(lambda x: "short_" + x, history_feature_list))
    for fc in varlen_sparse_feature_columns:
        feature_name = fc.name
        if feature_name in prefer_fc_names:
            prefer_history_columns.append(fc)

        elif feature_name in short_fc_names:
            short_history_columns.append(fc)
        else:
            sparse_varlen_feature_columns.append(fc)

    embedding_matrix_dict = create_embedding_matrix(user_feature_columns +
                                                    item_feature_columns,
                                                    l2_reg_embedding,
                                                    init_std,
                                                    seed,
                                                    prefix="")

    item_features = build_input_features(item_feature_columns)
    item_inputs_list = list(item_features.values())

    prefer_emb_list = embedding_lookup(embedding_matrix_dict,
                                       features,
                                       prefer_history_columns,
                                       prefer_fc_names,
                                       prefer_fc_names,
                                       to_list=True)  # L^u
    short_emb_list = embedding_lookup(embedding_matrix_dict,
                                      features,
                                      short_history_columns,
                                      short_fc_names,
                                      short_fc_names,
                                      to_list=True)  # S^u
    # dense_value_list = get_dense_input(features, dense_feature_columns)
    user_emb_list = embedding_lookup(embedding_matrix_dict,
                                     features,
                                     sparse_feature_columns,
                                     to_list=True)

    sequence_embed_dict = varlen_embedding_lookup(
        embedding_matrix_dict, features, sparse_varlen_feature_columns)
    sequence_embed_list = get_varlen_pooling_list(
        sequence_embed_dict,
        features,
        sparse_varlen_feature_columns,
        to_list=True)
    user_emb_list += sequence_embed_list  # e^u
    # if len(user_emb_list) > 0 or len(dense_value_list) > 0:
    #     user_emb_feature = combined_dnn_input(user_emb_list, dense_value_list)
    user_emb = concat_func(user_emb_list)
    user_emb_output = Dense(units,
                            activation=dnn_activation,
                            name="user_emb_output")(user_emb)

    prefer_sess_length = features['prefer_sess_length']
    prefer_att_outputs = []
    for i, prefer_emb in enumerate(prefer_emb_list):
        prefer_attention_output = AttentionSequencePoolingLayer(
            dropout_rate=0)([user_emb_output, prefer_emb, prefer_sess_length])
        prefer_att_outputs.append(prefer_attention_output)
    prefer_att_concat = concat_func(prefer_att_outputs)
    prefer_output = Dense(units,
                          activation=dnn_activation,
                          name="prefer_output")(prefer_att_concat)

    short_sess_length = features['short_sess_length']
    short_emb_concat = concat_func(short_emb_list)
    short_emb_input = Dense(units,
                            activation=dnn_activation,
                            name="short_emb_input")(short_emb_concat)

    short_rnn_output = DynamicMultiRNN(
        num_units=units,
        return_sequence=True,
        num_layers=rnn_layers,
        num_residual_layers=rnn_num_res,
        dropout_rate=dropout_rate)([short_emb_input, short_sess_length])

    short_att_output = SelfMultiHeadAttention(
        num_units=units,
        head_num=num_head,
        dropout_rate=dropout_rate,
        future_binding=True,
        use_layer_norm=True)([short_rnn_output, short_sess_length
                              ])  # [batch_size, time, num_units]

    short_output = UserAttention(num_units=units, activation=dnn_activation, use_res=True, dropout_rate=dropout_rate) \
        ([user_emb_output, short_att_output, short_sess_length])

    gate_input = concat_func([prefer_output, short_output, user_emb_output])
    gate = Dense(units, activation='sigmoid')(gate_input)

    gate_output = Lambda(
        lambda x: tf.multiply(x[0], x[1]) + tf.multiply(1 - x[0], x[2]))(
            [gate, short_output, prefer_output])
    gate_output_reshape = Lambda(lambda x: tf.squeeze(x, 1))(gate_output)

    item_index = EmbeddingIndex(list(range(item_vocabulary_size)))(
        item_features[item_feature_name])
    item_embedding_matrix = embedding_matrix_dict[item_feature_name]
    item_embedding_weight = NoMask()(item_embedding_matrix(item_index))

    pooling_item_embedding_weight = PoolingLayer()([item_embedding_weight])

    output = SampledSoftmaxLayer(num_sampled=num_sampled)([
        pooling_item_embedding_weight, gate_output_reshape,
        item_features[item_feature_name]
    ])
    model = Model(inputs=user_inputs_list + item_inputs_list, outputs=output)

    model.__setattr__("user_input", user_inputs_list)
    model.__setattr__("user_embedding", gate_output_reshape)

    model.__setattr__("item_input", item_inputs_list)
    model.__setattr__(
        "item_embedding",
        get_item_embedding(pooling_item_embedding_weight,
                           item_features[item_feature_name]))

    return model
Пример #6
0
def YoutubeDNN(
    user_feature_columns,
    item_feature_columns,
    num_sampled=5,
    user_dnn_hidden_units=(64, 32),
    dnn_activation='relu',
    dnn_use_bn=False,
    l2_reg_dnn=0,
    l2_reg_embedding=1e-6,
    dnn_dropout=0,
    init_std=0.0001,
    seed=1024,
):
    """Instantiates the YoutubeDNN Model architecture.

    :param user_feature_columns: An iterable containing user's features used by  the model.
    :param item_feature_columns: An iterable containing item's features used by  the model.
    :param num_sampled: int, the number of classes to randomly sample per batch.
    :param user_dnn_hidden_units: list,list of positive integer or empty list, the layer number and units in each layer of user tower
    :param dnn_activation: Activation function to use in deep net
    :param dnn_use_bn: bool. Whether use BatchNormalization before activation or not in deep net
    :param l2_reg_dnn: float. L2 regularizer strength applied to DNN
    :param l2_reg_embedding: float. L2 regularizer strength applied to embedding vector
    :param dnn_dropout: float in [0,1), the probability we will drop out a given DNN coordinate.
    :param init_std: float,to use as the initialize std of embedding vector
    :param seed: integer ,to use as random seed.
    :return: A Keras model instance.

    """

    if len(item_feature_columns) > 1:
        raise ValueError(
            "Now YoutubeNN only support 1 item feature like item_id")
    item_feature_name = item_feature_columns[0].name
    item_vocabulary_size = item_feature_columns[0].vocabulary_size

    #构建User和 item 的 Embedding dict
    embedding_matrix_dict = create_embedding_matrix(user_feature_columns +
                                                    item_feature_columns,
                                                    l2_reg_embedding,
                                                    init_std,
                                                    seed,
                                                    prefix="")

    #构建 User Input dict
    user_features = build_input_features(user_feature_columns)
    user_inputs_list = list(user_features.values())
    user_sparse_embedding_list, user_dense_value_list = input_from_feature_columns(
        user_features,
        user_feature_columns,
        l2_reg_embedding,
        init_std,
        seed,
        embedding_matrix_dict=embedding_matrix_dict)
    user_dnn_input = combined_dnn_input(user_sparse_embedding_list,
                                        user_dense_value_list)

    # 构建 item Input dict
    item_features = build_input_features(item_feature_columns)
    item_inputs_list = list(item_features.values())

    user_dnn_out = DNN(
        user_dnn_hidden_units,
        dnn_activation,
        l2_reg_dnn,
        dnn_dropout,
        dnn_use_bn,
        seed,
    )(user_dnn_input)

    print(item_features[item_feature_name])
    print(list(range(item_vocabulary_size)))
    item_index = EmbeddingIndex(list(range(item_vocabulary_size)))(
        item_features[item_feature_name])

    item_embedding_matrix = embedding_matrix_dict[item_feature_name]
    print(item_embedding_matrix(item_index))
    item_embedding_weight = NoMask()(item_embedding_matrix(item_index))

    pooling_item_embedding_weight = PoolingLayer()([item_embedding_weight])

    # tf.nn.sampled_softmax_loss,在类别很多的情况下训练softmax分类器的高效的方法。
    # 注意:仅在训练时使用这一采样操作,测试时还是用全部的类别
    output = SampledSoftmaxLayer(num_sampled=num_sampled)([
        pooling_item_embedding_weight, user_dnn_out,
        item_features[item_feature_name]
    ])
    model = Model(inputs=user_inputs_list + item_inputs_list, outputs=output)

    model.__setattr__("user_input", user_inputs_list)
    model.__setattr__("user_embedding", user_dnn_out)

    model.__setattr__("item_input", item_inputs_list)
    model.__setattr__(
        "item_embedding",
        get_item_embedding(pooling_item_embedding_weight,
                           item_features[item_feature_name]))

    return model