loss_name = args.loss poly_lr = args.poly_learning_rate lambda_loss = args.lambda_loss pixel_distance = args.pixel_distance num_cl = 108 train_sz = 4498 valid_sz = 500 rsize = True print('Model') deeplab_model = ResNet101(input_shape_1=(None, None, 3), input_shape_2=(None, None, 21), classes=num_cl, kernel_init=kernel_init, batch_norm=batchNorm, dil_rate_model=dil_rate, mult_rate=mult_rate) pathLoadWeights = "Y:/tesisti/rossi/Weights/prova.h5" deeplab_model.load_weights(pathLoadWeights, True) if loss_name == "standard": loss = ["categorical_crossentropy"] loss_name = "standard_loss" elif loss_name == "custom_loss": loss = [custom_loss(deeplab_model.get_layer('logits'))] loss_name = "custom_loss"
assert not (pathCP == 'not_defined'), "Checkpoint path not defined" if pathSave == 'not_defined': pathSave = "./" else: pathSave = pathSave + "/" pT = pathSave + datetime.now().strftime("%Y%m%d-%H%M%S") print(pathCP) if not os.path.isdir(pT): os.mkdir(pT) inf_path = pT + "/inf" os.mkdir(inf_path) print("load model weights") deeplab_model = ResNet101(input_shape_1=(None, None, 3), input_shape_2=(None, None, 21), classes=n_class) deeplab_model.load_weights(pathCP, by_name=True) dir_img = "Y:/tesisti/rossi/data/train_val_test_png/test_png/" dir_softmax = "Y:/tesisti/rossi/data/segmentation_gray/results_softmax_deeplabV2/test/" dir_seg = "Y:/tesisti/rossi/data/segmentation_part_gray/new_dataset_107/data_part_107part_test/" #### images = glob.glob(dir_img + "*.png") images.sort() softmax = glob.glob(dir_softmax + "*.npy") softmax.sort() segs = glob.glob(dir_seg + "*.png") segs.sort()