Пример #1
0
class BaseTheoryMaxwellModesFrequency:
    """[summary] 
        
    """
    help_file = 'http://reptate.readthedocs.io/manual/Applications/LVE/Theory/theory.html#maxwell-modes'
    single_file = True
    thname = TheoryMaxwellModesFrequency.thname
    citations = TheoryMaxwellModesFrequency.citations
    doi = TheoryMaxwellModesFrequency.doi 

    def __init__(self, name="", parent_dataset=None, ax=None):
        """
        **Constructor**
                
        Keyword Arguments:
            - name {[type]} -- [description] (default: {""})
            - parent_dataset {[type]} -- [description] (default: {None})
            - ax {[type]} -- [description] (default: {None})
        """
        super().__init__(name, parent_dataset, ax)
        self.function = self.MaxwellModesFrequency
        self.has_modes = True
        self.MAX_MODES = 40
        self.view_modes = True
        wmin = self.parent_dataset.minpositivecol(0)
        wmax = self.parent_dataset.maxcol(0)
        nmodes = int(np.round(np.log10(wmax / wmin)))

        self.parameters["logwmin"] = Parameter(
            "logwmin",
            np.log10(wmin),
            "Log of frequency range minimum",
            ParameterType.real,
            opt_type=OptType.opt)
        self.parameters["logwmax"] = Parameter(
            "logwmax",
            np.log10(wmax),
            "Log of frequency range maximum",
            ParameterType.real,
            opt_type=OptType.opt)
        self.parameters["nmodes"] = Parameter(
            name="nmodes",
            value=nmodes,
            description="Number of Maxwell modes",
            type=ParameterType.integer,
            opt_type=OptType.const,
            display_flag=False,
            min_value=1)
        # Interpolate modes from data
        w = np.logspace(np.log10(wmin), np.log10(wmax), nmodes)
        G = np.abs(
            np.interp(w, self.parent_dataset.files[0].data_table.data[:, 0],
                      self.parent_dataset.files[0].data_table.data[:, 1]))
        for i in range(self.parameters["nmodes"].value):
            self.parameters["logG%02d" % i] = Parameter(
                "logG%02d" % i,
                np.log10(G[i]),
                "Log of Mode %d amplitude" % i,
                ParameterType.real,
                opt_type=OptType.opt)

        # GRAPHIC MODES
        self.graphicmodes = []
        self.artistmodes = []
        self.setup_graphic_modes()

    def set_param_value(self, name, value):
        """Change other parameters when nmodes is changed, else call parent function"""
        if name == 'nmodes':
            nmodesold = self.parameters["nmodes"].value
            wminold = self.parameters["logwmin"].value
            wmaxold = self.parameters["logwmax"].value
            wold = np.logspace(wminold, wmaxold, nmodesold)
            Gold = np.zeros(nmodesold)
            for i in range(nmodesold):
                Gold[i] = self.parameters["logG%02d" % i].value
                del self.parameters["logG%02d" % i]

            nmodesnew = int(value)
            message, success = super().set_param_value("nmodes", nmodesnew)
            wnew = np.logspace(wminold, wmaxold, nmodesnew)

            Gnew = np.interp(wnew, wold, Gold)

            for i in range(nmodesnew):
                self.parameters["logG%02d" % i] = Parameter(
                    "logG%02d" % i,
                    Gnew[i],
                    "Log of Mode %d amplitude" % i,
                    ParameterType.real,
                    opt_type=OptType.opt)
            if CmdBase.mode == CmdMode.GUI:
                self.spinbox.blockSignals(True)
                self.spinbox.setValue(nmodesnew)
                self.spinbox.blockSignals(False)
        else:
            message, success = super().set_param_value(name, value)
        
        return message, success

    def drag_mode(self, dx, dy):
        """[summary]
        
        [description]
        
        Arguments:
            - dx {[type]} -- [description]
            - dy {[type]} -- [description]
        """
        nmodes = self.parameters["nmodes"].value
        if self.parent_dataset.parent_application.current_view.log_x:
            self.set_param_value("logwmin", np.log10(dx[0]))
            self.set_param_value("logwmax", np.log10(dx[nmodes - 1]))
        else:
            self.set_param_value("logwmin", dx[0])
            self.set_param_value("logwmax", dx[nmodes - 1])

        if self.parent_dataset.parent_application.current_view.log_y:
            for i in range(nmodes):
                self.set_param_value("logG%02d" % i, np.log10(dy[i]))
        else:
            for i in range(nmodes):
                self.set_param_value("logG%02d" % i, dy[i])

        self.do_calculate("")
        self.update_parameter_table()

    def update_modes(self):
        """[summary]
        
        [description]
        """
        pass

    def setup_graphic_modes(self):
        """[summary]
        
        [description]
        """
        nmodes = self.parameters["nmodes"].value
        w = np.logspace(self.parameters["logwmin"].value,
                        self.parameters["logwmax"].value, nmodes)
        G = np.zeros(nmodes)
        for i in range(nmodes):
            G[i] = np.power(10, self.parameters["logG%02d" % i].value)

        self.graphicmodes = self.ax.plot(w, G)[0]
        self.graphicmodes.set_marker('D')
        self.graphicmodes.set_linestyle('')
        self.graphicmodes.set_visible(self.view_modes)
        self.graphicmodes.set_markerfacecolor('yellow')
        self.graphicmodes.set_markeredgecolor('black')
        self.graphicmodes.set_markeredgewidth(3)
        self.graphicmodes.set_markersize(8)
        self.graphicmodes.set_alpha(0.5)
        self.artistmodes = DraggableModesSeries(
            self.graphicmodes, DragType.special,
            self.parent_dataset.parent_application, self.drag_mode)
        self.plot_theory_stuff()

    def destructor(self):
        """Called when the theory tab is closed
        
        [description]
        """
        self.graphicmodes_visible(False)
        self.ax.lines.remove(self.graphicmodes)

    def show_theory_extras(self, show=False):
        """Called when the active theory is changed
        
        [description]
        """
        if CmdBase.mode == CmdMode.GUI:
            self.Qhide_theory_extras(show)
        self.graphicmodes_visible(show)

    def graphicmodes_visible(self, state):
        """[summary]
        
        [description]
        """
        self.view_modes = state
        self.graphicmodes.set_visible(self.view_modes)
        if self.view_modes:
            self.artistmodes.connect()
        else:
            self.artistmodes.disconnect()
        # self.do_calculate("")
        self.parent_dataset.parent_application.update_plot()

    def get_modes(self):
        """[summary]
        
        [description]
        
        Returns:
            - [type] -- [description]
        """
        nmodes = self.parameters["nmodes"].value
        freq = np.logspace(self.parameters["logwmin"].value,
                           self.parameters["logwmax"].value, nmodes)
        tau = 1.0 / freq
        G = np.zeros(nmodes)
        for i in range(nmodes):
            G[i] = np.power(10, self.parameters["logG%02d" % i].value)
        return tau, G

    def set_modes(self, tau, G):
        """[summary]
        
        [description]
        
        Arguments:
            - tau {[type]} -- [description]
            - G {[type]} -- [description]
        """
        print("set_modes not allowed in this theory (%s)" % self.name)

    def MaxwellModesFrequency(self, f=None):
        """[summary]
        
        [description]
        
        Keyword Arguments:
            - f {[type]} -- [description] (default: {None})
        """
        ft = f.data_table
        tt = self.tables[f.file_name_short]
        tt.num_columns = ft.num_columns
        tt.num_rows = ft.num_rows
        tt.data = np.zeros((tt.num_rows, tt.num_columns))
        tt.data[:, 0] = ft.data[:, 0]

        nmodes = self.parameters["nmodes"].value
        freq = np.logspace(self.parameters["logwmin"].value,
                           self.parameters["logwmax"].value, nmodes)
        tau = 1.0 / freq

        for i in range(nmodes):
            if self.stop_theory_flag:
                break
            wT = tt.data[:, 0] * tau[i]
            wTsq = wT**2
            G = np.power(10, self.parameters["logG%02d" % i].value)
            tt.data[:, 1] += G * wTsq / (1 + wTsq)
            tt.data[:, 2] += G * wT / (1 + wTsq)

    def plot_theory_stuff(self):
        """[summary]
        
        [description]
        """
        # if not self.view_modes:
        #     return
        data_table_tmp = DataTable(self.axarr)
        data_table_tmp.num_columns = 3
        nmodes = self.parameters["nmodes"].value
        data_table_tmp.num_rows = nmodes
        data_table_tmp.data = np.zeros((nmodes, 3))
        freq = np.logspace(self.parameters["logwmin"].value,
                           self.parameters["logwmax"].value, nmodes)
        data_table_tmp.data[:, 0] = freq
        for i in range(nmodes):
            if self.stop_theory_flag:
                break
            data_table_tmp.data[i, 1] = data_table_tmp.data[i, 2] = np.power(
                10, self.parameters["logG%02d" % i].value)
        view = self.parent_dataset.parent_application.current_view
        try:
            x, y, success = view.view_proc(data_table_tmp, None)
        except TypeError as e:
            print(e)
            return
        self.graphicmodes.set_data(x, y)
        for i in range(data_table_tmp.MAX_NUM_SERIES):
            for nx in range(len(self.axarr)):
                self.axarr[nx].lines.remove(data_table_tmp.series[nx][i])
Пример #2
0
class BaseTheoryRetardationModesTime:
    """[summary]
    
    [description]
    """
    help_file = 'http://reptate.readthedocs.io/manual/Applications/Creep/Theory/theory.html#retardation-modes'
    single_file = True
    thname = TheoryRetardationModesTime.thname
    citations = TheoryRetardationModesTime.citations
    doi = TheoryRetardationModesTime.doi

    def __init__(self, name="", parent_dataset=None, ax=None):
        """
        **Constructor**
        
        Keyword Arguments:
            - name {[type]} -- [description] (default: {""})
            - parent_dataset {[type]} -- [description] (default: {None})
            - ax {[type]} -- [description] (default: {None})
        """
        super().__init__(name, parent_dataset, ax)
        self.function = self.RetardationModesTime
        self.has_modes = True
        self.MAX_MODES = 40
        self.view_modes = True
        tmin = self.parent_dataset.minpositivecol(0)
        tmax = self.parent_dataset.maxcol(0)
        nmodes = int(np.round(np.log10(tmax / tmin)))

        self.parameters["logJini"] = Parameter(
            "logJini",
            -4.0,
            "Log of Instantaneous Compliance",
            ParameterType.real,
            opt_type=OptType.opt)
        self.parameters["logeta0"] = Parameter("logeta0",
                                               0.0,
                                               "Log of Terminal Viscosity",
                                               ParameterType.real,
                                               opt_type=OptType.opt)
        self.parameters["logtmin"] = Parameter("logtmin",
                                               np.log10(tmin),
                                               "Log of time range minimum",
                                               ParameterType.real,
                                               opt_type=OptType.opt)
        self.parameters["logtmax"] = Parameter("logtmax",
                                               np.log10(tmax),
                                               "Log of time range maximum",
                                               ParameterType.real,
                                               opt_type=OptType.opt)
        self.parameters["nmodes"] = Parameter(
            name="nmodes",
            value=nmodes,
            description="Number of Retardation modes",
            type=ParameterType.integer,
            opt_type=OptType.const,
            display_flag=False)
        # Interpolate modes from data
        try:
            sigma = float(
                self.parent_dataset.files[0].file_parameters["stress"])
        except (ValueError, KeyError):
            self.Qprint("Invalid stress value")
            return
        tau = np.logspace(np.log10(tmin), np.log10(tmax), nmodes)
        J = np.abs(
            np.interp(tau, self.parent_dataset.files[0].data_table.data[:, 0],
                      self.parent_dataset.files[0].data_table.data[:,
                                                                   1])) / sigma
        for i in range(self.parameters["nmodes"].value):
            self.parameters["logJ%02d" % i] = Parameter(
                "logJ%02d" % i,
                np.log10(J[i]),
                "Log of Mode %d amplitude" % i,
                ParameterType.real,
                opt_type=OptType.opt)

        # GRAPHIC MODES
        self.graphicmodes = None
        self.artistmodes = None
        self.setup_graphic_modes()

    def drag_mode(self, dx, dy):
        """[summary]
        
        [description]
        
        Arguments:
            - dx {[type]} -- [description]
            - dy {[type]} -- [description]
        """
        nmodes = self.parameters["nmodes"].value
        self.set_param_value("logtmin", dx[0])
        self.set_param_value("logtmax", dx[nmodes - 1])
        for i in range(nmodes):
            self.set_param_value("logJ%02d" % i, dy[i])
        self.do_calculate("")
        self.update_parameter_table()

    def update_modes(self):
        """[summary]
        
        [description]
        """
        pass

    def setup_graphic_modes(self):
        """[summary]
        
        [description]
        """
        nmodes = self.parameters["nmodes"].value
        tau = np.logspace(self.parameters["logtmin"].value,
                          self.parameters["logtmax"].value, nmodes)
        J = np.zeros(nmodes)
        for i in range(nmodes):
            J[i] = np.power(10, self.parameters["logJ%02d" % i].value)

        self.graphicmodes = self.ax.plot(tau, J)[0]
        self.graphicmodes.set_marker('D')
        self.graphicmodes.set_linestyle('')
        self.graphicmodes.set_visible(self.view_modes)
        self.graphicmodes.set_markerfacecolor('yellow')
        self.graphicmodes.set_markeredgecolor('black')
        self.graphicmodes.set_markeredgewidth(3)
        self.graphicmodes.set_markersize(8)
        self.graphicmodes.set_alpha(0.5)
        self.artistmodes = DraggableModesSeries(
            self.graphicmodes, DragType.special,
            self.parent_dataset.parent_application, self.drag_mode)
        self.plot_theory_stuff()

    def destructor(self):
        """Called when the theory tab is closed
        
        [description]
        """
        self.graphicmodes_visible(False)
        self.ax.lines.remove(self.graphicmodes)

    def show_theory_extras(self, show=False):
        """Called when the active theory is changed
        
        [description]
        """
        if CmdBase.mode == CmdMode.GUI:
            self.Qhide_theory_extras(show)
        self.graphicmodes_visible(show)

    def graphicmodes_visible(self, state):
        """[summary]
        
        [description]
        """
        self.view_modes = state
        self.graphicmodes.set_visible(self.view_modes)
        if self.view_modes:
            self.artistmodes.connect()
        else:
            self.artistmodes.disconnect()
        # self.do_calculate("")
        self.parent_dataset.parent_application.update_plot()

    def get_modes(self):
        """[summary]
        
        [description]
        
        Returns:
            - [type] -- [description]
        """
        nmodes = self.parameters["nmodes"].value
        tau = np.logspace(self.parameters["logtmin"].value,
                          self.parameters["logtmax"].value, nmodes)
        J = np.zeros(nmodes)
        for i in range(nmodes):
            J[i] = 1.0 / np.power(10, self.parameters["logJ%02d" % i].value)
        return tau, J

    def set_modes(self, tau, J):
        """[summary]
        
        [description]
        
        Arguments:
            - tau {[type]} -- [description]
            - J {[type]} -- [description]
        """
        print("set_modes not allowed in this theory (%s)" % self.name)

    def RetardationModesTime(self, f=None):
        """[summary]
        
        [description]
        
        Keyword Arguments:
            - f {[type]} -- [description] (default: {None})
        """
        ft = f.data_table
        tt = self.tables[f.file_name_short]
        tt.num_columns = ft.num_columns
        tt.num_rows = ft.num_rows
        tt.data = np.zeros((tt.num_rows, tt.num_columns))
        tt.data[:, 0] = ft.data[:, 0]

        try:
            stress = float(f.file_parameters["stress"])
        except (ValueError, KeyError):
            self.Qprint("Invalid stress value")
            return
        nmodes = self.parameters["nmodes"].value
        J0 = np.power(10, self.parameters["logJini"].value)
        eta0 = np.power(10, self.parameters["logeta0"].value)
        tau = np.logspace(self.parameters["logtmin"].value,
                          self.parameters["logtmax"].value, nmodes)

        for i in range(nmodes):
            if self.stop_theory_flag:
                break
            expT_tau = (1.0 - np.exp(-tt.data[:, 0] / tau[i]))
            J = np.power(10, self.parameters["logJ%02d" % i].value)
            tt.data[:, 1] += stress * J * expT_tau
        tt.data[:, 1] += stress * (J0 + tt.data[:, 0] / eta0)

    def plot_theory_stuff(self):
        """[summary]
        
        [description]
        """
        if not self.view_modes:
            return
        data_table_tmp = DataTable(self.axarr)
        data_table_tmp.num_columns = 2
        nmodes = self.parameters["nmodes"].value
        data_table_tmp.num_rows = nmodes
        data_table_tmp.data = np.zeros((nmodes, 2))
        tau = np.logspace(self.parameters["logtmin"].value,
                          self.parameters["logtmax"].value, nmodes)
        data_table_tmp.data[:, 0] = tau
        for i in range(nmodes):
            if self.stop_theory_flag:
                break
            data_table_tmp.data[i, 1] = np.power(
                10, self.parameters["logJ%02d" % i].value)
        view = self.parent_dataset.parent_application.current_view
        try:
            x, y, success = view.view_proc(data_table_tmp, None)
        except TypeError as e:
            print(e)
            return
        self.graphicmodes.set_data(x, y)
        for i in range(data_table_tmp.MAX_NUM_SERIES):
            for nx in range(len(self.axarr)):
                self.axarr[nx].lines.remove(data_table_tmp.series[nx][i])
Пример #3
0
class BaseTheoryKWWModesFrequency:
    """[summary] 
        
    """
    help_file = 'http://reptate.readthedocs.io/manual/Applications/Dielectric/Theory/theory.html#kolhrauch-williams-watts-kww-modes'
    single_file = True
    thname = TheoryKWWModesFrequency.thname
    citations = TheoryKWWModesFrequency.citations
    doi = TheoryKWWModesFrequency.doi

    def __init__(self, name="", parent_dataset=None, ax=None):
        """
        **Constructor**
                
        Keyword Arguments:
            - name {[type]} -- [description] (default: {""})
            - parent_dataset {[type]} -- [description] (default: {None})
            - ax {[type]} -- [description] (default: {None})
        """
        super().__init__(name, parent_dataset, ax)
        self.function = self.KWWModesFrequency
        self.has_modes = False
        self.MAX_MODES = 40
        self.view_modes = True
        wmin = self.parent_dataset.minpositivecol(0)
        wmax = self.parent_dataset.maxcol(0)
        nmodes = int(np.round(np.log10(wmax / wmin)))

        self.parameters["einf"] = Parameter(
            "einf",
            0.0,
            "Unrelaxed permittivity",
            ParameterType.real,
            opt_type=OptType.opt,
            bracketed=True,
            min_value=0)
        self.parameters["beta"] = Parameter(
            "beta",
            0.5,
            'Stretched exponential parameter',
            ParameterType.real,
            opt_type=OptType.opt,
            bracketed=True,
            min_value=0.1,
            max_value=2.0)
        self.parameters["logwmin"] = Parameter(
            "logwmin",
            np.log10(wmin),
            "Log of frequency range minimum",
            ParameterType.real,
            opt_type=OptType.opt)
        self.parameters["logwmax"] = Parameter(
            "logwmax",
            np.log10(wmax),
            "Log of frequency range maximum",
            ParameterType.real,
            opt_type=OptType.opt)
        self.parameters["nmodes"] = Parameter(
            name="nmodes",
            value=nmodes,
            description="Number of KWW modes",
            type=ParameterType.integer,
            opt_type=OptType.const,
            display_flag=False)
        # Interpolate modes from data
        w = np.logspace(np.log10(wmin), np.log10(wmax), nmodes)
        eps = np.abs(
            np.interp(w, self.parent_dataset.files[0].data_table.data[:, 0],
                      self.parent_dataset.files[0].data_table.data[:, 1]))
        for i in range(self.parameters["nmodes"].value):
            self.parameters["logDe%02d" % i] = Parameter(
                "logDe%02d" % i,
                np.log10(eps[i]),
                "Log of Mode %d amplitude" % i,
                ParameterType.real,
                opt_type=OptType.opt)

        # GRAPHIC MODES
        self.graphicmodes = []
        self.artistmodes = []
        self.setup_graphic_modes()

    def drag_mode(self, dx, dy):
        """[summary]
        
        [description]
        
        Arguments:
            - dx {[type]} -- [description]
            - dy {[type]} -- [description]
        """
        nmodes = self.parameters["nmodes"].value
        if self.parent_dataset.parent_application.current_view.log_x:
            self.set_param_value("logwmin", np.log10(dx[0]))
            self.set_param_value("logwmax", np.log10(dx[nmodes - 1]))
        else:
            self.set_param_value("logwmin", dx[0])
            self.set_param_value("logwmax", dx[nmodes - 1])

        if self.parent_dataset.parent_application.current_view.log_y:
            for i in range(nmodes):
                self.set_param_value("logDe%02d" % i, np.log10(dy[i]))
        else:
            for i in range(nmodes):
                self.set_param_value("logDe%02d" % i, dy[i])

        self.do_calculate("")
        self.update_parameter_table()

    def update_modes(self):
        """[summary]
        
        [description]
        """
        pass

    def setup_graphic_modes(self):
        """[summary]
        
        [description]
        """
        nmodes = self.parameters["nmodes"].value
        w = np.logspace(self.parameters["logwmin"].value,
                        self.parameters["logwmax"].value, nmodes)
        eps = np.zeros(nmodes)
        for i in range(nmodes):
            eps[i] = np.power(10, self.parameters["logDe%02d" % i].value)

        self.graphicmodes = self.ax.plot(w, eps)[0]
        self.graphicmodes.set_marker('D')
        self.graphicmodes.set_linestyle('')
        self.graphicmodes.set_visible(self.view_modes)
        self.graphicmodes.set_markerfacecolor('yellow')
        self.graphicmodes.set_markeredgecolor('black')
        self.graphicmodes.set_markeredgewidth(3)
        self.graphicmodes.set_markersize(8)
        self.graphicmodes.set_alpha(0.5)
        self.artistmodes = DraggableModesSeries(
            self.graphicmodes, DragType.special,
            self.parent_dataset.parent_application, self.drag_mode)
        self.plot_theory_stuff()

    def destructor(self):
        """Called when the theory tab is closed
        
        [description]
        """
        self.graphicmodes_visible(False)
        self.ax.lines.remove(self.graphicmodes)

    def show_theory_extras(self, show=False):
        """Called when the active theory is changed
        
        [description]
        """
        if CmdBase.mode == CmdMode.GUI:
            self.Qhide_theory_extras(show)
        self.graphicmodes_visible(show)

    def graphicmodes_visible(self, state):
        """[summary]
        
        [description]
        """
        self.view_modes = state
        self.graphicmodes.set_visible(self.view_modes)
        if self.view_modes:
            self.artistmodes.connect()
        else:
            self.artistmodes.disconnect()
        # self.do_calculate("")
        self.parent_dataset.parent_application.update_plot()

    def get_modes(self):
        """[summary]
        
        [description]
        
        Returns:
            - [type] -- [description]
        """
        nmodes = self.parameters["nmodes"].value
        freq = np.logspace(self.parameters["logwmin"].value,
                           self.parameters["logwmax"].value, nmodes)
        tau = 1.0 / freq
        eps = np.zeros(nmodes)
        for i in range(nmodes):
            eps[i] = np.power(10, self.parameters["logDe%02d" % i].value)
        return tau, eps

    def set_modes(self, tau, eps):
        """[summary]
        
        [description]
        
        Arguments:
            - tau {[type]} -- [description]
            - eps {[type]} -- [description]
        """
        print("set_modes not allowed in this theory (%s)" % self.name)

    def KWWModesFrequency(self, f=None):
        """[summary]
        
        [description]
        
        Keyword Arguments:
            - f {[type]} -- [description] (default: {None})
        """
        ft = f.data_table
        tt = self.tables[f.file_name_short]
        tt.num_columns = ft.num_columns
        tt.num_rows = ft.num_rows
        tt.data = np.zeros((tt.num_rows, tt.num_columns))
        tt.data[:, 0] = ft.data[:, 0]

        einf = self.parameters["einf"].value
        beta = self.parameters["beta"].value
        nmodes = self.parameters["nmodes"].value
        freq = np.logspace(self.parameters["logwmin"].value,
                           self.parameters["logwmax"].value, nmodes)
        tau = 1.0 / freq

        tt.data[:, 1] += einf
        for i in range(nmodes):
            if self.stop_theory_flag:
                break
            eps = np.power(10, self.parameters["logDe%02d" % i].value)
            for j, w in enumerate(tt.data[:, 0]):
                tt.data[j, 1] += eps * kwwc(w * tau[i], beta)
                tt.data[j, 2] += eps * kwws(w * tau[i], beta)

    def plot_theory_stuff(self):
        """[summary]
        
        [description]
        """
        # if not self.view_modes:
        #     return
        data_table_tmp = DataTable(self.axarr)
        data_table_tmp.num_columns = 3
        nmodes = self.parameters["nmodes"].value
        data_table_tmp.num_rows = nmodes
        data_table_tmp.data = np.zeros((nmodes, 3))
        freq = np.logspace(self.parameters["logwmin"].value,
                           self.parameters["logwmax"].value, nmodes)
        data_table_tmp.data[:, 0] = freq
        for i in range(nmodes):
            if self.stop_theory_flag:
                break
            data_table_tmp.data[i, 1] = data_table_tmp.data[i, 2] = np.power(
                10, self.parameters["logDe%02d" % i].value)
        view = self.parent_dataset.parent_application.current_view
        try:
            x, y, success = view.view_proc(data_table_tmp, None)
        except TypeError as e:
            print(e)
            return
        self.graphicmodes.set_data(x, y)
        for i in range(data_table_tmp.MAX_NUM_SERIES):
            for nx in range(len(self.axarr)):
                self.axarr[nx].lines.remove(data_table_tmp.series[nx][i])