def test_attack_ordered(): ugraph_network = load_graph('computer_network.txt') ugraph_ER = ugraph_probability(NODES, P) attack_ordered((ugraph_network, ugraph_ER)) data_file = open('data_resilience_ordered.p', 'rb') cc_set = pickle.load(data_file) data_file.close() print('test attack:') print("cc_network length: %d, cc_er length: %d" %(len(cc_set[0]), len(cc_set[1]))) print("cc_network: %s\n%s" %(cc_set[0][-6:], cc_set[0][:6])) print("cc_er: %s\n%s" %(cc_set[1][-6:], cc_set[1][:6]))
def test_attack_ordered(): ugraph_network = load_graph('computer_network.txt') ugraph_ER = ugraph_probability(NODES, P) attack_ordered((ugraph_network, ugraph_ER)) data_file = open('data_resilience_ordered.p', 'rb') cc_set = pickle.load(data_file) data_file.close() print('test attack:') print("cc_network length: %d, cc_er length: %d" % (len(cc_set[0]), len(cc_set[1]))) print("cc_network: %s\n%s" % (cc_set[0][-6:], cc_set[0][:6])) print("cc_er: %s\n%s" % (cc_set[1][-6:], cc_set[1][:6]))
def test_ro(): ugraph = ugraph_probability(10, 0.3) print random_order(ugraph)
def test_to_ER(): #test targeted_order with ugraph_ER from ER_ugraph import ugraph_probability ugraph = ugraph_probability(10, 0.4) print("test targeted graph: %s" % targeted_order(ugraph))
def test_to_ER(): #test targeted_order with ugraph_ER from ER_ugraph import ugraph_probability ugraph = ugraph_probability(10, 0.4) print("test targeted graph: %s" %targeted_order(ugraph))