Пример #1
0
    def test_simpSample(self):
        """ Test simple rejection sampler

        Test method: use KS-statistic for two continuous distributions
        and ensure that generated values correctly correlate with each one
        """

        #uniform dist
        ulim = [0,1]
        ufun = lambda x: 1.0/np.diff(ulim)

        n = int(1e5)
        usample = statsFun.simpSample(ufun,n,ulim[0],ulim[1])
        self.assertGreaterEqual(usample.min(), ulim[0])
        self.assertLessEqual(usample.max(), ulim[1])

        nlim = [-10,10]
        nfun = lambda x: np.exp(-x**2./2.0)/np.sqrt(2.0*np.pi)
        nsample = statsFun.simpSample(nfun,n,nlim[0],nlim[1])
        self.assertGreaterEqual(nsample.min(), nlim[0])
        self.assertLessEqual(nsample.min(), nlim[1])

        self.assertGreaterEqual(scipy.stats.kstest(usample,'uniform')[1],0.01,'Uniform sample does not look uniform.')
        self.assertGreaterEqual(scipy.stats.kstest(nsample,'norm')[1],0.01,'Normal sample does not look normal.')
        self.assertLessEqual(scipy.stats.kstest(nsample,'uniform')[1],0.01,'Normal sample looks too uniform.')
        self.assertLessEqual(scipy.stats.kstest(usample,'norm')[1],0.01,'Uniform sample looks too normal.')
Пример #2
0
    def test_simpSample_trivial(self):
        """ Test simple rejection sampler with trivial inputs

        Test method: set up sampling with equal upper and lower bounds
        """

        ulim = [0,1]
        ufun = lambda x: 1.0/np.diff(ulim)

        n = 10000
        sample = statsFun.simpSample(ufun,n,0.5,0.5)

        self.assertEqual(len(sample),n)
        self.assertTrue(np.all(sample == 0.5))
Пример #3
0
 def gen_eccen(self, n):
     """Generate eccentricity values
     
     Rayleigh distribution, as in Kipping et. al (2013)
     
     Args:
         n (integer):
             Number of samples to generate
             
     Returns:
         e (ndarray):
             Planet eccentricity
     
     """
     
     n = self.gen_input_check(n)
     e = statsFun.simpSample(self.edist, n, self.erange[0],self.erange[1])
     
     return e
Пример #4
0
    def gen_eccen(self, n):
        """Generate eccentricity values
        
        Rayleigh distribution, as in Kipping et. al (2013)
        
        Args:
            n (integer):
                Number of samples to generate
                
        Returns:
            e (ndarray):
                Planet eccentricity
        
        """

        n = self.gen_input_check(n)
        e = statsFun.simpSample(self.edist, n, self.erange[0], self.erange[1])

        return e
Пример #5
0
 def gen_sma(self, n):
     """Generate semi-major axis values in AU
     
     Samples a power law distribution with exponential turn-off 
     determined by class attribute smaknee
     
     Args:
         n (integer):
             Number of samples to generate
             
     Returns:
         a (astropy Quantity array):
             Semi-major axis in units of AU
     
     """
     n = self.gen_input_check(n)
     a = statsFun.simpSample(self.smadist, n, self.arange[0].to('AU').value,\
             self.arange[1].to('AU').value)*u.AU
     
     return a
Пример #6
0
    def gen_sma(self, n):
        """Generate semi-major axis values in AU
        
        Samples a power law distribution with exponential turn-off 
        determined by class attribute smaknee
        
        Args:
            n (integer):
                Number of samples to generate
                
        Returns:
            astropy Quantity array:
                Semi-major axis values in units of AU
        
        """
        n = self.gen_input_check(n)
        ar = self.arange.to('AU').value
        a = statsFun.simpSample(self.dist_sma, n, ar[0], ar[1]) * u.AU

        return a
Пример #7
0
 def gen_mass(self,n):
     """Generate planetary mass values in Earth mass
     
     The mass is determined by sampling the RV mass distribution from
     Cumming et al. 2010
     
     Args:
         n (integer):
             Number of samples to generate
             
     Returns:
         Mp (astropy Quantity array):
             Planet mass values in units of Earth mass
     
     """
     n = self.gen_input_check(n)
     # unitless mass range
     Mpr = self.Mprange.to('earthMass').value
     Mp = statsFun.simpSample(self.dist_mass, n, Mpr[0], Mpr[1])*u.earthMass
     
     return Mp
Пример #8
0
 def gen_mass(self,n):
     """Generate planetary mass values in kg
     
     The mass is determined by sampling the RV mass distribution from
     Cumming et al. 2010
     
     Args:
         n (integer):
             Number of samples to generate
             
     Returns:
         Mp (astropy Quantity array):
             Planet mass in units of kg
     
     """
     n = self.gen_input_check(n)
     Mmin = (self.Mprange[0]/const.M_jup).decompose().value
     Mmax = (self.Mprange[1]/const.M_jup).decompose().value
     Mp = statsFun.simpSample(self.massdist, n, Mmin, Mmax)*const.M_jup
     
     return Mp
Пример #9
0
 def gen_mass(self,n):
     """Generate planetary mass values in kg
     
     The mass is determined by sampling the RV mass distribution from
     Cumming et al. 2010
     
     Args:
         n (integer):
             Number of samples to generate
             
     Returns:
         Mp (astropy Quantity array):
             Planet mass in units of kg
     
     """
     n = self.gen_input_check(n)
     Mmin = (self.Mprange[0]/const.M_jup).decompose().value
     Mmax = (self.Mprange[1]/const.M_jup).decompose().value
     Mp = statsFun.simpSample(self.massdist, n, Mmin, Mmax)*const.M_jup
     
     return Mp
Пример #10
0
    def gen_mass(self, n):
        """Generate planetary mass values in Earth mass
        
        The mass is determined by sampling the RV mass distribution from
        Cumming et al. 2010
        
        Args:
            n (integer):
                Number of samples to generate
                
        Returns:
            Mp (astropy Quantity array):
                Planet mass values in units of Earth mass
        
        """
        n = self.gen_input_check(n)
        # unitless mass range
        Mpr = self.Mprange.to('earthMass').value
        Mp = statsFun.simpSample(self.dist_mass, n, Mpr[0],
                                 Mpr[1]) * u.earthMass

        return Mp