def main(): for i in range(p.Runs): from Models.Trias.Node import Node p.NODES = [] for i in range(p.Nn): p.NODES.append(Node(id=i, hashPower=100 / p.Nn)) clock = 0 # set clock to 0 at the start of the simulation if p.hasTrans: if p.Ttechnique == "Light": LT.create_transactions() # generate pending transactions elif p.Ttechnique == "Full": FT.create_transactions() # generate pending transactions Node.generate_gensis_block( p.NODES) # generate the gensis block for all miners BlockCommit.generate_initial_events( ) # initiate initial events >= 1 to start with if p.attack: Security.generate_initial_events() while not Queue.isEmpty() and clock <= p.simTime: next_event = Queue.pop_event() clock = next_event.time # move clock to the time of the event BlockCommit.handle_event(next_event) Output.output_to_xlsx("data_v5.xlsx") # Output.calculate() Output.reset()
def main(): for i in range (p.Runs): clock =0 # set clock to 0 at the start of the simulation if p.hasTrans: if p.Ttechnique == "Light": LT.create_transactions() # generate pending transactions elif p.Ttechnique == "Full": FT.create_transactions() # generate pending transactions Node.generate_gensis_block() # generate the gensis block for all miners BlockCommit.generate_initial_events() # initiate initial events >= 1 to start with while not Queue.isEmpty() and clock <= p.simTime: next_event = Queue.get_next_event() clock = next_event.time # move clock to the time of the event BlockCommit.handle_event(next_event) Queue.remove_event(next_event) Consensus.fork_resolution() # apply the longest chain to resolve the forks Incentives.distribute_rewards()# distribute the rewards between the particiapting nodes Statistics.calculate() # calculate the simulation results (e.g., block statstics and miners' rewards) ########## reset all global variable before the next run ############# Statistics.reset() # reset all variables used to calculate the results Node.resetState() # reset all the states (blockchains) for all nodes in the network fname = os.getenv('OUTPUT', "(Allverify)1day_{0}M_{1}K".format( p.Bsize/1000000, p.Tn/1000))+".xlsx" Statistics.print_to_excel(fname) # print all the simulation results in an excel file Statistics.reset2() # reset profit results
def main(): for i in range(p.Runs): clock = 0 # set clock to 0 at the start of the simulation if p.hasTrans: if p.Ttechnique == "Light": LT.create_transactions() # generate pending transactions elif p.Ttechnique == "Full": FT.create_transactions() # generate pending transactions Node.generate_gensis_block( ) # generate the gensis block for all miners # initiate initial events >= 1 to start with BlockCommit.generate_initial_events() while not Queue.isEmpty() and clock <= p.simTime: next_event = Queue.get_next_event() clock = next_event.time # move clock to the time of the event BlockCommit.handle_event(next_event) Queue.remove_event(next_event) # for the AppendableBlock process transactions and # optionally verify the model implementation if p.model == 3: BlockCommit.process_gateway_transaction_pools() if i == 0 and p.VerifyImplemetation: Verification.perform_checks() Consensus.fork_resolution( ) # apply the longest chain to resolve the forks # distribute the rewards between the particiapting nodes Incentives.distribute_rewards() # calculate the simulation results (e.g., block statstics and miners' rewards) Statistics.calculate() if p.model == 3: Statistics.print_to_excel(i, True) Statistics.reset() else: ########## reset all global variable before the next run ############# Statistics.reset( ) # reset all variables used to calculate the results Node.resetState( ) # reset all the states (blockchains) for all nodes in the network fname = "(Allverify)1day_{0}M_{1}K.xlsx".format( p.Bsize / 1000000, p.Tn / 1000) # print all the simulation results in an excel file Statistics.print_to_excel(fname) fname = "(Allverify)1day_{0}M_{1}K.xlsx".format( p.Bsize / 1000000, p.Tn / 1000) # print all the simulation results in an excel file Statistics.print_to_excel(fname) Statistics.reset2() # reset profit results
def process_queue(): while not Queue.isEmpty(): next_event = Queue.get_next_event() BlockCommit.handle_event(next_event) Queue.remove_event(next_event)
def main(): for i in range(p.Runs): print('-' * 10, f'Run: {i+1}', '-' * 10) print(p.sim_type) print('No. of Miners:', len(p.NODES)) hash_power = 0 # Giving every pool a reference to the nodes it contains. Also, update the total hashrate of a pool. print('SOLO Nodes: ', end='') for node in p.NODES: hash_power += node.hashPower if node.pool: node.pool.nodes.append(node) node.pool.hash_power += node.hashPower else: print(node.id, end=', ') print() print('Pools:') for pool in p.POOLS: print(' -', pool.id, pool.strategy, 'Fee Rate:', pool.fee_rate, 'Nodes:', [node.id for node in pool.nodes], 'Hash power:', pool.hash_power) print('Total hash power:', hash_power, '\n') clock = 0 # set clock to 0 at the start of the simulation if p.hasTrans: if p.Ttechnique == "Light": LT.create_transactions() # generate pending transactions elif p.Ttechnique == "Full": FT.create_transactions() # generate pending transactions Node.generate_gensis_block( ) # generate the gensis block for all miners # initiate initial events >= 1 to start with BlockCommit.generate_initial_events() while not Queue.isEmpty() and clock <= p.simTime: next_event = Queue.get_next_event() clock = next_event.time # move clock to the time of the event BlockCommit.handle_event(next_event) Queue.remove_event(next_event) # for the AppendableBlock process transactions and # optionally verify the model implementation if p.model == 3: BlockCommit.process_gateway_transaction_pools() if i == 0 and p.VerifyImplemetation: Verification.perform_checks() Consensus.fork_resolution( ) # apply the longest chain to resolve the forks # distribute the rewards between the particiapting nodes Incentives.distribute_rewards() # calculate the simulation results (e.g., block statstics and miners' rewards) Statistics.calculate(i) if p.model == 3: Statistics.print_to_excel(i, True) Statistics.reset() else: ########## reset all global variable before the next run ############# Statistics.reset( ) # reset all variables used to calculate the results Node.resetState( ) # reset all the states (blockchains) for all nodes in the network Pool.resetState() # reset all pools in the network # set file name for results fname = f"{p.sim_type}_{int(p.simTime/(24*60*60))}days_{datetime.now()}.xlsx".replace( ':', '_') # fname = f"(Allverify)1day_{p.Bsize/1000000}M_{p.Tn/1000}K-{i}-{datetime.now()}.xlsx".replace(':', '_') # print all the simulation results in an excel file Statistics.print_to_excel(fname)