def DGreen(N: int, CFL: float): dx = 2 / N dt = (CFL * dx**2) a = -1 b = 1 tf = 0.25 method = "CN" def d(x): return 1 def q(x): return 0.0 def bc0(t): return 0 def bc1(t): return 0 def Ddelta(x): if (x < dx / 4 and x > -dx / 4): return 1 else: return 0 def f(x, t): return 0 BC1 = BoundaryCondition(a, type="N", constraint=lambda t: 0) BC2 = BoundaryCondition(b, type="N", constraint=lambda t: 0) # geometry_dict = {"Dirichlet": -1, "Neumann": 0} spgrid = SpaceGrid(a, b, N + 1) xsample = np.linspace(a, b, N + 1) # xsample = xsample[-geometry_dict[BC1.type]: xsample.shape[0]+geometry_dict[BC2.type]] # xsample=xsample[1:] ST = SturmLiouville(spgrid, d, q) ibvp = IBVP(ST=ST, Nonlinear=None, IC=Ddelta, BCs=[BC1, BC2], rhs=lambda x, t: 0) ibvp.compute() # print(ibvp.odefunc(ic(xsample)[0:-1], 0)) sol = ibvp.customize_solve(t_span=[0, tf], type=method, max_step=dt) sol.t = sol.t[1:] sol.y = sol.y[:, 1:] min = sol.y.min() PlotSpaceTimePDE( sol, xsample, xcount=2, tcount=2, title="Discrete Green for {},N={}, CFL={}, min={:.2g}".format( method, N, CFL, min)) plt.plot(xsample, sol.y[:, 0]) plt.show()
def IBVP_solve_plot(): def d(x): return 1 def q(x): return 0 def u(x): return np.cos(np.pi * x / 2) def ftilde(xsample, t): return 0 def ic1(xsample): return np.array([pow(np.cos(np.pi * 0.5 * x), 100) for x in xsample]) def ic(xsample): def step(x): if x < 0.5: return 0 else: return 1 return np.array([step(x) for x in xsample]) a = 0 b = 1 BC1 = BoundaryCondition(a, type="D", constraint=lambda t: 0) BC2 = BoundaryCondition(b, type="N", constraint=lambda t: 0) geometry_dict = {"Dirichlet": -1, "Neumann": 0} spgrid = SpaceGrid(a, b, 512 + 1) xsample = np.linspace(a, b, 512 + 1) # xsample = xsample[-geometry_dict[BC1.type]: xsample.shape[0]+geometry_dict[BC2.type]] # xsample=xsample[1:] ST = SturmLiouville(spgrid, d, q) ibvp = IBVP(ST=ST, Nonlinear=None, IC=ic, BCs=[BC1, BC2], rhs=ftilde) ibvp.compute() # print(ibvp.odefunc(ic(xsample)[0:-1], 0)) sol = ibvp.ibvp_solve(t_span=[0, 10], type="Radau", max_step=0.01) Write_sol_json(sol, file_name="sol.json") # sol = ibvp.customize_solve(t_span=[0,10], max_step=0.01) sol = Read_sol_json(file_name="sol.json") # Animate_1d_wave(sol, xsample=xsample) PlotSpaceTimePDE(sol, xsample)
def NonlinearPDE(): a = -1 b = 1 u0 = 26.16 tf = 2.12 dt = 0.01 N = 64 method = "Radau" def d(x): return 2 + np.cos(2 * np.pi * x) def q(x): return 0 def nonlinear(x): return x**2 def f(x, t): return 0 def ic(x): return u0 * np.cos(np.pi * x / 2)**100 BC1 = BoundaryCondition(a, type="D", constraint=lambda t: 0) BC2 = BoundaryCondition(b, type="D", constraint=lambda t: 0) # geometry_dict = {"Dirichlet": -1, "Neumann": 0} spgrid = SpaceGrid(a, b, N + 1) xsample = np.linspace(a, b, N + 1) # xsample = xsample[-geometry_dict[BC1.type]: xsample.shape[0]+geometry_dict[BC2.type]] # xsample=xsample[1:] ST = SturmLiouville(spgrid, d, q) ibvp = IBVP(ST=ST, Nonlinear=nonlinear, IC=ic, BCs=[BC1, BC2], rhs=lambda x, t: 0) ibvp.compute() # print(ibvp.odefunc(ic(xsample)[0:-1], 0)) sol = ibvp.ibvp_solve(t_span=[0, tf], type=method, max_step=dt) Write_sol_json(sol, file_name="sol.json") # sol = ibvp.customize_solve(t_span=[0,10], max_step=0.01) sol = Read_sol_json(file_name="sol.json") # Animate_1d_wave(sol, xsample=xsample) sol_atx0 = sol.y[N // 2] # print("ahah",sol_atx0) ta = 3 * tf / 4 nta = int(ta // dt) nta = 0 sol_atx0 = sol_atx0[nta:] tsample = sol.t[nta:] print("t", tsample) print("u", sol_atx0.shape) T = 2.125 plt.plot(tsample, sol_atx0, 'x', label="f(t)=u(x=0,t)") plt.plot(tsample, [1 / (T - t) for t in tsample], label="1/({}-t)".format(T)) plt.legend() plt.title("finite time blow up and $1/(T-t)$") plt.grid(True) plt.xlabel("t") plt.ylabel("u(x=0, t)") plt.show()
def CN_BE_Compare(t: float = 0.01, tf: float = 0.25): def d(x): return 1 def q(x): return 0.0 def bc0(t): return 0 def bc1(t): return 0 def ic(x): if x < 0.5: return 0 else: return 1 # return np.sin(np.pi * x /2) def f(x, t): return 0 a = 0 b = 1 t_span = [0, tf] N = 128 CFL = 100 dts = [CFL / N**2] methods = ["BE", "CN"] markerdict = dict(zip(methods, ["x-", "--"])) BC0 = BoundaryCondition(a, type="D", constraint=bc0) BC1 = BoundaryCondition(b, type="N", constraint=bc1) spgrid = SpaceGrid(a, b, N + 1) xsample = np.linspace(a, b, N + 1) FFT_name = "FFT for tf={}.json".format(tf) import os exists = os.path.isfile('../data/{}'.format(FFT_name)) if exists: # Store configuration file values print("Read existing FFT solution file") FFTsol = Read_sol_json(FFT_name) FFT_xspan = np.linspace(a, b, 1024 + 1)[:-1] else: FFTsol, FFT_xspan = FFT_ibvp(t_span, x_span=[a, b], Nt=1000, Nx=512, ic=ic) nth = int(t / (tf / 1000)) FFTsol_at_t = FFTsol.y[:, nth] # initialize the SturmLiouville system and initial-boundary value problem ST = SturmLiouville(spgrid, d, q) ibvp = IBVP(ST=ST, Nonlinear=None, IC=ic, BCs=[BC0, BC1], rhs=f) # compute the discretization and matrix involved ibvp.compute() sol_at_t_dict = {} for method in methods: for dt in dts: json_name = "sol_compare tspan=({},{}) node={}, dt={:.2g}, for {}.json".format( 0, tf, N, dt, method) print(json_name) import os exists = os.path.isfile('../data/{}'.format(json_name)) if exists: # Store configuration file values print("Read existing solution file") sol = Read_sol_json(json_name) else: # Keep presets if (method in ["CN", "BE"]): sol = ibvp.customize_solve(t_span=t_span, type=method, max_step=dt) Write_sol_json(sol, json_name) else: sol = ibvp.ibvp_solve(t_span=t_span, type=method, max_step=dt) Write_sol_json(sol, json_name) nth = int(t / dt) + 1 sol_at_t_dict[(method, dt)] = sol.y[:, nth] if method == "CN": PlotSpaceTimePDE( sol, xsample, title="Space time sol for CN N={}, CFL={}".format(N, CFL), xcount=5, tcount=50) for key in sol_at_t_dict: method = key[0] dt = key[1] plt.semilogy(xsample[10::2], np.abs(sol_at_t_dict[key])[10::2], markerdict[method], label="solution at t={}, dt={}, CFL={}, method={}".format( t, dt, N * N * dt, method)) plt.semilogy(FFT_xspan[100:], FFTsol_at_t[100:], label="FFT sol at t={}".format(t)) plt.legend(loc='upper center', bbox_to_anchor=(0.5, -0.2), fancybox=True, shadow=True, ncol=1) plt.xlabel("x") plt.ylabel("u(t={})".format(t)) plt.title("Comapre for CFL={} for grid num={}".format(N * N * dt, N)) plt.grid(True) plt.show()
def Verify2ndAccuracy(grid_size=[4, 8, 16, 32, 64, 128], axis: str = 't', norm_type: str = "L1"): def d(x): return 2 + np.cos(np.pi * x) def q(x): return 0.0 def bc0(t): return 1 + np.exp(-(np.pi**2) * t / 4) def bc1(t): return -0.5 * np.pi * (1 + np.exp(-(np.pi**2) * t / 4)) def ic(x): return 2 * np.cos(0.5 * np.pi * x) def f(x, t): result = -1/ 4 * (np.pi ** 2) * np.exp(- (np.pi ** 2) * t / 4) \ * np.cos(x * np.pi/2)*(-1 + 3 *(1 + np.exp((np.pi ** 2) * t / 4))* np.cos(x * np.pi)) return result def exact_sol(x, t): return (1 + np.exp(-(np.pi**2) * t / 4)) * np.cos(np.pi * x / 2) a = 0 b = 1 t_span = [0, 0.25] methods = ["CN", "Ralston"] method = methods[0] markdict = {4: 'x', 8: 'x', 16: 'x', 32: 'x', 64: 'x', 128: '-', 256: "x"} markoffsetdict = dict(zip(methods, ['', '-'])) errors2d = {"L1": [], "L2": [], "Linf": []} for N in grid_size: dt = 1 / (8 * N**2) BC0 = BoundaryCondition(a, type="D", constraint=bc0) BC1 = BoundaryCondition(b, type="N", constraint=bc1) spgrid = SpaceGrid(a, b, N + 1) xsample = np.linspace(a, b, N + 1) # initialize the SturmLiouville system and initial-boundary value problem ST = SturmLiouville(spgrid, d, q) ibvp = IBVP(ST=ST, Nonlinear=None, IC=ic, BCs=[BC0, BC1], rhs=f) # compute the discretization and matrix involved ibvp.compute() json_name = "sol node={}, dt={:.2g}, for {}.json".format(N, dt, method) print(json_name) import os exists = os.path.isfile('../data/{}'.format(json_name)) if exists: # Store configuration file values sol = Read_sol_json(json_name) else: # Keep presets if (method in ["CN", "BE"]): sol = ibvp.customize_solve(t_span=t_span, type=method, max_step=dt) else: sol = ibvp.ibvp_solve(t_span=t_span, type=method, max_step=dt) Write_sol_json(sol, json_name) ysample = np.abs(sol.y - np.array([[exact_sol(x, t) for t in sol.t] for x in xsample]))[1:, 1:] tsample = sol.t[1:] sliced_xsample = xsample[1:] sol1 = OdeResult(t=tsample, y=ysample) errors = FunctionNormAlong(sol=sol1, xsample=sliced_xsample, axis=axis, type=norm_type) errors_L1 = FunctionNormAlong(sol=sol1, xsample=sliced_xsample, axis=axis, type="L1") errors_L2 = FunctionNormAlong(sol=sol1, xsample=sliced_xsample, axis=axis, type="L2") errors_Linf = FunctionNormAlong(sol=sol1, xsample=sliced_xsample, axis=axis, type="Linf") errors2d["L1"].append( FunctionNorm1D(errors_L1.copy(), 1 / N, type="L1")) errors2d["L2"].append( FunctionNorm1D(errors_L2.copy(), 1 / N, type="L2")) errors2d["Linf"].append( FunctionNorm1D(errors_Linf.copy(), 1 / N, type="Linf")) if axis == "t": offset = {4: 1, 8: 1, 16: 1, 32: 1, 64: 2, 128: 4}[N] plt.semilogy(sliced_xsample[::offset], errors[::offset], markdict[N] + markoffsetdict[method], label=json_name[4:-5]) elif axis == "x": plt.semilogy(tsample, errors, markdict[N] + markoffsetdict[method], label=json_name[4:-5]) # powers = [pow(2, i) for i in range(1,5)] for i in [2, 4, 8, 16, 32]: plt.semilogy(sliced_xsample, errors * pow(i, 2), '--', label="{} times the node=128 error".format(i)) if axis == 't': plt.xlabel("x") plt.title( "Verification of 2nd oder accuracy in {} norm".format(norm_type)) else: plt.xlabel("t") plt.title( "Verification of 2nd oder accuracy in {} norm".format(norm_type)) plt.ylabel("log(error})") plt.grid(True) plt.legend(loc='center left', bbox_to_anchor=(1, 0.6), shadow=True, ncol=1) plt.show() for key in errors2d: plt.loglog(grid_size, errors2d[key], 'x-', label="total error in 2D-{} norm".format(key)) plt.loglog(grid_size, [4 * pow(g, -2) for g in grid_size], '-', label="base line of second oder arruracy") # plt.loglog(grid_size, [0.01 * pow(g, -4) for g in grid_size], '-', label="base line of fourth oder arruracy") plt.grid(True) plt.legend() plt.xlabel("node number N") plt.ylabel("total errors") plt.title( "Verification of 2nd order accuracy in 2D norms for {}".format(method)) plt.show()
def LTEplot2D(grid_size=[4, 8, 16, 32, 64, 128], axis: str = 't', norm_type: str = "L1"): def d(x): return 2 + np.cos(np.pi * x) def q(x): return 0.0 def bc0(t): return 1 + np.exp(-(np.pi**2) * t / 4) def bc1(t): return -0.5 * np.pi * (1 + np.exp(-(np.pi**2) * t / 4)) def ic(x): return 2 * np.cos(0.5 * np.pi * x) def f(x, t): result = -1/ 4 * (np.pi ** 2) * np.exp(- (np.pi ** 2) * t / 4) \ * np.cos(x * np.pi/2)*(-1 + 3 *(1 + np.exp((np.pi ** 2) * t / 4))* np.cos(x * np.pi)) return result def exact_sol(x, t): return (1 + np.exp(-(np.pi**2) * t / 4)) * np.cos(np.pi * x / 2) a = 0 b = 1 t_span = [0, 0.25] methods = ["CN", "Ralston"] markdict = {4: 'x', 8: 'x', 16: 'x', 32: 'x', 64: 'x', 128: 'x', 256: "x"} markoffsetdict = dict(zip(methods, ['', ''])) for N in grid_size: dt = 1 / (8 * N**2) BC0 = BoundaryCondition(a, type="D", constraint=bc0) BC1 = BoundaryCondition(b, type="N", constraint=bc1) spgrid = SpaceGrid(a, b, N + 1) xsample = np.linspace(a, b, N + 1) # initialize the SturmLiouville system and initial-boundary value problem ST = SturmLiouville(spgrid, d, q) ibvp = IBVP(ST=ST, Nonlinear=None, IC=ic, BCs=[BC0, BC1], rhs=f) # compute the discretization and matrix involved ibvp.compute() for method in methods: json_name = "sol node={}, dt={:.2g}, for {}.json".format( N, dt, method) print(json_name) import os exists = os.path.isfile('../data/{}'.format(json_name)) if exists: # Store configuration file values sol = Read_sol_json(json_name) else: # Keep presets if (method in ["CN", "BE"]): sol = ibvp.customize_solve(t_span=t_span, type=method, max_step=dt) else: sol = ibvp.ibvp_solve(t_span=t_span, type=method, max_step=dt) Write_sol_json(sol, json_name) ysample = np.abs(sol.y - np.array([[exact_sol(x, t) for t in sol.t] for x in xsample]))[1:, 1:] tsample = sol.t[1:] sliced_xsample = xsample[1:] sol1 = OdeResult(t=tsample, y=ysample) errors = FunctionNormAlong(sol=sol1, xsample=sliced_xsample, axis=axis, type=norm_type) if axis == "t": plt.semilogy(sliced_xsample, errors, markdict[N] + markoffsetdict[method], label=json_name[4:-5]) elif axis == "x": plt.semilogy(tsample, errors, markdict[N] + markoffsetdict[method], label=json_name[4:-5]) if axis == 't': plt.xlabel("x") plt.title("x" + "-error relation in {} norm".format(norm_type)) else: plt.xlabel("t") plt.title("t" + "-error relation in {} norm".format(norm_type)) plt.ylabel("log(error})") plt.grid(True) plt.legend(loc='center left', bbox_to_anchor=(1, 0.8), shadow=True, ncol=1) plt.show()
def LTEplot3D(): def d(x): return 2 + np.cos(np.pi * x) def q(x): return 0.0 def bc0(t): return 1 + np.exp(-(np.pi**2) * t / 4) def bc1(t): return -0.5 * np.pi * (1 + np.exp(-(np.pi**2) * t / 4)) def ic(x): return 2 * np.cos(0.5 * np.pi * x) def f(x, t): result = -1/ 4 * (np.pi ** 2) * np.exp(- (np.pi ** 2) * t / 4) \ * np.cos(x * np.pi/2)*(-1 + 3 *(1 + np.exp((np.pi ** 2) * t / 4))* np.cos(x * np.pi)) return result def exact_sol(x, t): return (1 + np.exp(-(np.pi**2) * t / 4)) * np.cos(np.pi * x / 2) a = 0 b = 1 t_span = [0, 0.25] N = 10 dt = 0.00213 method = "Ralston" BC0 = BoundaryCondition(a, type="D", constraint=bc0) BC1 = BoundaryCondition(b, type="N", constraint=bc1) spgrid = SpaceGrid(a, b, N + 1) xsample = np.linspace(a, b, N + 1) # initialize the SturmLiouville system and initial-boundary value problem ST = SturmLiouville(spgrid, d, q) ibvp = IBVP(ST=ST, Nonlinear=None, IC=ic, BCs=[BC0, BC1], rhs=f) # compute the discretization and matrix involved ibvp.compute() if (method in ["CN", "BE"]): sol = ibvp.customize_solve(t_span=t_span, type=method, max_step=dt) else: sol = ibvp.ibvp_solve(t_span=t_span, type=method, max_step=dt) json_name = "sol_test node={}, dt={}, for {}".format(N, dt, method) Write_sol_json(sol, json_name + ".json") sol1 = Read_sol_json(json_name + ".json") PlotSpaceTimePDE(sol1, xsample, title="Space-Time-Solution node={}, dt={}, for {}".format( N, dt, method), tcount=50, xcount=1) ysample = np.log10( np.abs(sol1.y - np.array([[exact_sol(x, t) for t in sol1.t] for x in xsample]))) sol2 = OdeResult(t=sol1.t[1:], y=ysample[1:, 1:]) PlotSpaceTimePDE(sol2, xsample[1:], title="Space-Time-Error node={}, dt={} for {}".format( N, dt, method), tcount=50, xcount=1, error_plot=True)