Пример #1
0
    def setOptimalValues(self, esM, pyM):
        """
        Set the optimal values of the components.

        :param esM: EnergySystemModel instance representing the energy system in which the component should be modeled.
        :type esM: esM - EnergySystemModel class instance

        :param pym: pyomo ConcreteModel which stores the mathematical formulation of the model.
        :type pym: pyomo ConcreteModel
        """
        compDict, abbrvName = self.componentsDict, self.abbrvName
        opVar = getattr(pyM, 'op_' + abbrvName)

        # Set optimal design dimension variables and get basic optimization summary
        optSummaryBasic = super(SourceSinkModel, self).setOptimalValues(esM, pyM, esM.locations, 'commodityUnit')

        # Set optimal operation variables and append optimization summary
        chargeOp = getattr(pyM, 'chargeOp_storExt')
        optVal = utils.formatOptimizationOutput(chargeOp.get_values(), 'operationVariables', '1dim', esM.periodsOrder)

        def groupStor(x):
            ix = optVal.loc[x].name
            for compName, comp in self.componentsDict.items():
                if ix[0] in [compName + '_' + str(i) for i in range(comp.tBwd+comp.tFwd+1)]:
                    return (compName, ix[1])

        optVal = optVal.groupby(lambda x: groupStor(x)).sum()
        optVal.index = pd.MultiIndex.from_tuples(optVal.index)

        self.operationVariablesOptimum = optVal

        props = ['operation', 'opexOp', 'commodCosts', 'commodRevenues']
        units = ['[-]', '[' + esM.costUnit + '/a]', '[' + esM.costUnit + '/a]', '[' + esM.costUnit + '/a]']
        tuples = [(compName, prop, unit) for compName in compDict.keys() for prop, unit in zip(props, units)]
        tuples = list(map(lambda x: (x[0], x[1], '[' + compDict[x[0]].commodityUnit + '*h/a]')
                          if x[1] == 'operation' else x, tuples))
        mIndex = pd.MultiIndex.from_tuples(tuples, names=['Component', 'Property', 'Unit'])
        optSummary = pd.DataFrame(index=mIndex, columns=sorted(esM.locations)).sort_index()

        if optVal is not None:
            opSum = optVal.sum(axis=1).unstack(-1)
            ox = opSum.apply(lambda op: op * compDict[op.name].opexPerOperation[op.index], axis=1)
            cCost = opSum.apply(lambda op: op * compDict[op.name].commodityCost[op.index], axis=1)
            cRevenue = opSum.apply(lambda op: op * compDict[op.name].commodityRevenue[op.index], axis=1)
            
            optSummary.loc[[(ix, 'operation', '[' + compDict[ix].commodityUnit + '*h/a]') for ix in opSum.index],
                            opSum.columns] = opSum.values/esM.numberOfYears
            optSummary.loc[[(ix, 'opexOp', '[' + esM.costUnit + '/a]') for ix in ox.index], ox.columns] = \
                ox.values/esM.numberOfYears
            
            # get empty datframe for resulting time dependent (TD) cost sum
            cRevenueTD = pd.DataFrame(0., index = list(compDict.keys()), columns = opSum.columns)
            cCostTD = pd.DataFrame(0., index = list(compDict.keys()), columns = opSum.columns)

            for compName in compDict.keys():
                if not compDict[compName].commodityCostTimeSeries is None:
                    # in case of time series aggregation rearange clustered cost time series
                    calcCostTD = utils.buildFullTimeSeries(compDict[compName].commodityCostTimeSeries, 
                                                           esM.periodsOrder, axis=0)
                    # multiply with operation values to get the total cost
                    cCostTD.loc[compName,:] = optVal.xs(compName, level=0).T.mul(calcCostTD).sum(axis=0)

                if not compDict[compName].commodityRevenueTimeSeries is None:
                    # in case of time series aggregation rearange clustered revenue time series
                    calcRevenueTD = utils.buildFullTimeSeries(compDict[compName].commodityRevenueTimeSeries,
                                                              esM.periodsOrder, axis=0)
                    # multiply with operation values to get the total revenue
                    cRevenueTD.loc[compName,:] = optVal.xs(compName, level=0).T.mul(calcRevenueTD).sum(axis=0)
                        
            optSummary.loc[[(ix, 'commodCosts', '[' + esM.costUnit + '/a]') for ix in ox.index], ox.columns] = \
                (cCostTD.values + cCost.values)/esM.numberOfYears

            optSummary.loc[[(ix, 'commodRevenues', '[' + esM.costUnit + '/a]') for ix in ox.index], ox.columns] = \
                (cRevenueTD.values + cRevenue.values)/esM.numberOfYears
        
        # get discounted investment cost as total annual cost (TAC)
        optSummary = optSummary.append(optSummaryBasic).sort_index()

        # add operation specific contributions to the total annual cost (TAC) and substract revenues
        optSummary.loc[optSummary.index.get_level_values(1) == 'TAC'] = \
            optSummary.loc[(optSummary.index.get_level_values(1) == 'TAC') |
                           (optSummary.index.get_level_values(1) == 'opexOp') |
                           (optSummary.index.get_level_values(1) == 'commodCosts')].groupby(level=0).sum().values \
            - optSummary.loc[(optSummary.index.get_level_values(1) == 'commodRevenues')].groupby(level=0).sum().values

        self.optSummary = optSummary
Пример #2
0
    def setOptimalValues(self, esM, pyM):
        """
        Set the optimal values of the components.

        :param esM: EnergySystemModel instance representing the energy system in which the component should be modeled.
        :type esM: esM - EnergySystemModel class instance

        :param pym: pyomo ConcreteModel which stores the mathematical formulation of the model.
        :type pym: pyomo ConcreteModel
        """
        compDict, abbrvName = self.componentsDict, self.abbrvName
        opVar = getattr(pyM, "op_" + abbrvName)

        # Set optimal design dimension variables and get basic optimization summary
        optSummaryBasic = super().setOptimalValues(
            esM, pyM, esM.locations, "commodityUnit"
        )

        # Set optimal operation variables and append optimization summary
        optVal = utils.formatOptimizationOutput(
            opVar.get_values(), "operationVariables", "1dim", esM.periodsOrder, esM=esM
        )
        self.operationVariablesOptimum = optVal

        props = ["operation", "opexOp", "commodCosts", "commodRevenues"]
        # Unit dict: Specify units for props
        units = {
            props[0]: ["[-*h]", "[-*h/a]"],
            props[1]: ["[" + esM.costUnit + "/a]"],
            props[2]: ["[" + esM.costUnit + "/a]"],
            props[3]: ["[" + esM.costUnit + "/a]"],
        }
        # Create tuples for the optSummary's multiIndex. Combine component with the respective properties and units.
        tuples = [
            (compName, prop, unit)
            for compName in compDict.keys()
            for prop in props
            for unit in units[prop]
        ]
        # Replace placeholder with correct unit of component
        tuples = list(
            map(
                lambda x: (x[0], x[1], x[2].replace("-", compDict[x[0]].commodityUnit))
                if x[1] == "operation"
                else x,
                tuples,
            )
        )
        mIndex = pd.MultiIndex.from_tuples(
            tuples, names=["Component", "Property", "Unit"]
        )
        optSummary = pd.DataFrame(
            index=mIndex, columns=sorted(esM.locations)
        ).sort_index()

        if optVal is not None:
            opSum = optVal.sum(axis=1).unstack(-1)
            ox = opSum.apply(
                lambda op: op * compDict[op.name].opexPerOperation[op.index], axis=1
            )
            cCost = opSum.apply(
                lambda op: op * compDict[op.name].commodityCost[op.index], axis=1
            )
            cRevenue = opSum.apply(
                lambda op: op * compDict[op.name].commodityRevenue[op.index], axis=1
            )
            optSummary.loc[
                [
                    (ix, "operation", "[" + compDict[ix].commodityUnit + "*h/a]")
                    for ix in opSum.index
                ],
                opSum.columns,
            ] = (
                opSum.values / esM.numberOfYears
            )
            optSummary.loc[
                [
                    (ix, "operation", "[" + compDict[ix].commodityUnit + "*h]")
                    for ix in opSum.index
                ],
                opSum.columns,
            ] = opSum.values
            optSummary.loc[
                [(ix, "opexOp", "[" + esM.costUnit + "/a]") for ix in ox.index],
                ox.columns,
            ] = (
                ox.values / esM.numberOfYears
            )

            # get empty datframe for resulting time dependent (TD) cost sum
            cRevenueTD = pd.DataFrame(0.0, index=opSum.index, columns=opSum.columns)
            cCostTD = pd.DataFrame(0.0, index=opSum.index, columns=opSum.columns)

            for compName in opSum.index:
                if not compDict[compName].processedCommodityCostTimeSeries is None:

                    # in case of time series aggregation rearange clustered cost time series
                    calcCostTD = utils.buildFullTimeSeries(
                        compDict[compName]
                        .processedCommodityCostTimeSeries.unstack(level=1)
                        .stack(level=0),
                        esM.periodsOrder,
                        esM=esM,
                        divide=False,
                    )
                    # multiply with operation values to get the total cost
                    cCostTD.loc[compName, :] = (
                        optVal.xs(compName, level=0).T.mul(calcCostTD.T).sum(axis=0)
                    )

                if not compDict[compName].processedCommodityRevenueTimeSeries is None:
                    # in case of time series aggregation rearange clustered revenue time series
                    calcRevenueTD = utils.buildFullTimeSeries(
                        compDict[compName]
                        .processedCommodityRevenueTimeSeries.unstack(level=1)
                        .stack(level=0),
                        esM.periodsOrder,
                        esM=esM,
                        divide=False,
                    )
                    # multiply with operation values to get the total revenue
                    cRevenueTD.loc[compName, :] = (
                        optVal.xs(compName, level=0).T.mul(calcRevenueTD.T).sum(axis=0)
                    )

            optSummary.loc[
                [(ix, "commodCosts", "[" + esM.costUnit + "/a]") for ix in ox.index],
                ox.columns,
            ] = (cCostTD.values + cCost.values) / esM.numberOfYears
            optSummary.loc[
                [(ix, "commodRevenues", "[" + esM.costUnit + "/a]") for ix in ox.index],
                ox.columns,
            ] = (cRevenueTD.values + cRevenue.values) / esM.numberOfYears

        # get discounted investment cost as total annual cost (TAC)
        optSummary = optSummary.append(optSummaryBasic).sort_index()

        # add operation specific contributions to the total annual cost (TAC) and substract revenues
        optSummary.loc[optSummary.index.get_level_values(1) == "TAC"] = (
            optSummary.loc[
                (optSummary.index.get_level_values(1) == "TAC")
                | (optSummary.index.get_level_values(1) == "opexOp")
                | (optSummary.index.get_level_values(1) == "commodCosts")
            ]
            .groupby(level=0)
            .sum()
            .values
            - optSummary.loc[(optSummary.index.get_level_values(1) == "commodRevenues")]
            .groupby(level=0)
            .sum()
            .values
        )

        self.optSummary = optSummary