def make_puCorrector(dataset, kind=None): if not kind: kind = 'S6' if is7TeV else 'S10' if dataset is 'doublemu': return PileupWeight.PileupWeight( 'S6' if is7TeV else 'S10', *pu_distributions_doublemu) elif dataset is 'doublee': return PileupWeight.PileupWeight( 'S6' if is7TeV else 'S10', *pu_distributions_doublee) return None
def make_puCorrectorDown(dataset, kind=None): 'makes PU reweighting according to the pu distribution of the reference data and the MC, MC distribution can be forced' if not kind: kind = mc_pu_tag if dataset in pu_distributions: return PileupWeight.PileupWeight( 'S6' if is7TeV else 'MC_Moriond17', *(pu_distributionsDown[dataset])) else: raise KeyError('dataset not present. Please check the spelling or add it to mcCorrectors.py')
def __init__(self, tree, outfile, **kwargs): super(WHAnalyzeMMT, self).__init__(tree, outfile, MuMuTauTree, **kwargs) # Hack to use S6 weights for the one 7TeV sample we use in 8TeV target = os.environ['megatarget'] if 'HWW3l' in target: print "HACK using S6 PU weights for HWW3l" global pu_corrector pu_corrector = PileupWeight.PileupWeight('S6', *pu_distributions)
def make_puCorrector(dataset, kind=None): 'makes PU reweighting according to the pu distribution of the reference data and the MC, MC distribution can be forced' if not kind: kind = mc_pu_tag weights = [] if dataset in pu_distributions: # and dataset in pu_distributionsUp and dataset in pu_distributionsDown: return PileupWeight.PileupWeight('S6' if is7TeV else 'S10', *(pu_distributions[dataset])) # weights = (PileupWeight.PileupWeight( 'S6' if is7TeV else 'S10', *(pu_distributions[dataset])), PileupWeight.PileupWeight( 'S6' if is7TeV else 'S10', *(pu_distributionsUp[dataset])), PileupWeight.PileupWeight( 'S6' if is7TeV else 'S10', *(pu_distributionsDown[dataset]))) # return weights else: raise KeyError( 'dataset not present. Please check the spelling or add it to mcCorrectors.py' )
'fit_efficiency', # workspace name 'efficiency') ################################################################################ #### MC-DATA and PU corrections ################################################ ################################################################################ # Determine MC-DATA corrections is7TeV = bool('7TeV' in os.environ['jobid']) print "Is 7TeV:", is7TeV # Make PU corrector from expected data PU distribution # PU corrections .root files from pileupCalc.py pu_distributions = glob.glob( os.path.join('inputs', os.environ['jobid'], 'data_DoubleMu*pu.root')) pu_corrector = PileupWeight.PileupWeight('S6' if is7TeV else 'S7', *pu_distributions) muon_pog_PFTight_2011 = MuonPOGCorrections.make_muon_pog_PFTight_2011() muon_pog_PFTight_2012 = MuonPOGCorrections.make_muon_pog_PFTight_2012() muon_pog_PFRelIsoDB02_2011 = MuonPOGCorrections.make_muon_pog_PFRelIsoDB02_2011( ) muon_pog_PFRelIsoDB02_2012 = MuonPOGCorrections.make_muon_pog_PFRelIsoDB02_2012( ) muon_pog_Mu17Mu8_Mu17_2012 = MuonPOGCorrections.make_muon_pog_Mu17Mu8_Mu17_2012( ) muon_pog_Mu17Mu8_Mu8_2012 = MuonPOGCorrections.make_muon_pog_Mu17Mu8_Mu8_2012() # takes etas of muons muon_pog_Mu17Mu8_2011 = MuonPOGCorrections.muon_pog_Mu17Mu8_eta_eta_2011
den = math.sqrt(xth) mass = row.m_t_Mass / den #print '%4.2f, %4.2f, %4.2f, %4.2f, %4.2f' %(scaleMass(row), den, xth, METproj,mass) return mass pu_distributions = glob.glob( os.path.join( # 'inputs', os.environ['jobid'], 'data_TauPlusX*pu.root')) 'inputs', os.environ['jobidpu'], 'data_SingleMu*pu.root')) pu_corrector = PileupWeight.PileupWeight('Asympt25ns', *pu_distributions) def fakeWeight(row): if row.tDecayMode == 0: return 0.62 # 0.81 if row.tDecayMode == 1: return 0.76 #0.80 if row.tDecayMode == 10: return 0.44 #0.44 class AnalyzeLFVMuTau(MegaBase): tree = 'mt/final/Ntuple' #tree = 'New_Tree'