def build_model(self): """Build generator and discriminator.""" self.generator = Generator(z_dim=self.z_dim, image_size=self.image_size, conv_dim=self.g_conv_dim)\ .to(self.device) self.discriminator = Discriminator(image_size=self.image_size, conv_dim=self.d_conv_dim).to( self.device) self.g_optimizer = optim.Adam(self.generator.parameters(), self.lr, [self.beta1, self.beta2]) self.d_optimizer = optim.Adam(self.discriminator.parameters(), self.lr, [self.beta1, self.beta2]) if self.cuda: cudnn.benchmark = True
def main(): # Load the data (DataLoader object) path_monnet = 'C:/Users/remys/GAN-Art-Monet/img' path_pictures = 'C:/Users/remys/GAN-Art-Monet/photo' batch_size = 1 n_epochs = 10 device = 'cpu' dataset = get_data_loader(path_monnet, path_pictures, batch_size) # Create Generators and Discriminators and put them on GPU/TPU generator_AB = Generator().to(device) generator_BA = Generator().to(device) discriminator_A = Discriminator().to(device) discriminator_B = Discriminator().to(device) # Set optimizers G_AB_optimizer = torch.optim.Adam(generator_AB.parameters(), lr=2e-4) G_BA_optimizer = torch.optim.Adam(generator_BA.parameters(), lr=2e-4) D_A_optimizer = torch.optim.Adam(discriminator_A.parameters(), lr=2e-4) D_B_optimizer = torch.optim.Adam(discriminator_B.parameters(), lr=2e-4) # Set trainer trainer = Trainer( generator_ab=generator_AB, generator_ba=generator_BA, discriminator_a=discriminator_A, discriminator_b=discriminator_B, generator_ab_optimizer=G_AB_optimizer, generator_ba_optimizer=G_BA_optimizer, discriminator_a_optimizer=D_A_optimizer, discriminator_b_optimizer=D_B_optimizer, n_epochs=n_epochs, dataloader=dataset, device=device, ) # Launch Training trainer.train()
from GAN.Config import cfg from GAN.dataset import load_data import tensorflow as tf import pandas as pd import numpy as np import os import time tf.keras.backend.set_floatx('float64') input_tensor = tf.keras.layers.Input([100]) output_tensors = Generator(input_tensor) model_generator = tf.keras.Model(input_tensor, output_tensors) input_tensor = tf.keras.layers.Input([204]) output_tensors = Discriminator(input_tensor) model_discriminator = tf.keras.Model(input_tensor, output_tensors) cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits=False) generator_optimizer = tf.keras.optimizers.Adam(learning_rate=10) discriminator_optimizer = tf.keras.optimizers.Adam(learning_rate=10) checkpoint_dir = './training_checkpoints' checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt") checkpoint = tf.train.Checkpoint( generator_optimizer=generator_optimizer, discriminator_optimizer=discriminator_optimizer, generator=model_generator, discriminator=model_discriminator)
class GANSolver(object): def __init__(self, config, data_loader): self.generator = None self.discriminator = None self.g_optimizer = None self.d_optimizer = None self.cuda = torch.cuda.is_available() self.device = torch.device('cuda' if self.cuda else 'cpu') self.g_conv_dim = config.g_conv_dim self.d_conv_dim = config.d_conv_dim self.z_dim = config.z_dim self.beta1 = config.beta1 self.beta2 = config.beta2 self.image_size = config.image_size self.data_loader = data_loader self.num_epochs = config.num_epochs self.batch_size = config.batch_size self.sample_size = config.sample_size self.lr = config.lr self.log_step = config.log_step self.sample_step = config.sample_step self.sample_path = config.sample_path self.model_path = config.model_path self.build_model() def build_model(self): """Build generator and discriminator.""" self.generator = Generator(z_dim=self.z_dim, image_size=self.image_size, conv_dim=self.g_conv_dim)\ .to(self.device) self.discriminator = Discriminator(image_size=self.image_size, conv_dim=self.d_conv_dim).to( self.device) self.g_optimizer = optim.Adam(self.generator.parameters(), self.lr, [self.beta1, self.beta2]) self.d_optimizer = optim.Adam(self.discriminator.parameters(), self.lr, [self.beta1, self.beta2]) if self.cuda: cudnn.benchmark = True def to_data(self, x): """Convert variable to tensor.""" if self.cuda: x = x.cpu() return x.data def reset_grad(self): """Zero the gradient buffers.""" self.d_optimizer.zero_grad() self.g_optimizer.zero_grad() @staticmethod def de_normalize(x): """Convert range (-1, 1) to (0, 1)""" out = (x + 1) / 2 return out.clamp(0, 1) @staticmethod def least_square_loss(output, target): return torch.mean((output - target)**2) def fixed_noise(self): return self.torch.randn(self.batch_size, self.z_dim, device=self.device) def save_model(self, epoch): g_path = os.path.join(self.model_path, 'GAN-generator-%d.pkl' % (epoch + 1)) d_path = os.path.join(self.model_path, 'GAN-discriminator-%d.pkl' % (epoch + 1)) torch.save(self.generator.state_dict(), g_path) torch.save(self.discriminator.state_dict(), d_path) def save_fakes(self, step, epoch): if (step + 1) % self.sample_step == 0: fake_images = self.generator(self.fixed_noise()) torchvision.utils.save_image( self.de_normalize(fake_images.data), os.path.join( self.sample_path, 'GAN-fake_samples-%d-%d.png' % (epoch + 1, step + 1))) def train(self): """Train generator and discriminator.""" total_step = len(self.data_loader) for epoch in range(self.num_epochs): print("===> Epoch [%d/%d]" % (epoch + 1, self.num_epochs)) for i, images in enumerate(self.data_loader): # ===================== Train D ===================== # images = images.to(self.device) batch_size = images.size(0) noise = torch.randn(batch_size, self.z_dim, device=self.device) # Train D to recognize real images as real. outputs = self.discriminator(images) real_loss = self.least_square_loss( outputs, 1 ) # L2 loss instead of Binary cross entropy loss (this is optional for stable training) # Train D to recognize fake images as fake. fake_images = self.generator(noise) outputs = self.discriminator(fake_images) fake_loss = self.least_square_loss(outputs, 0) # Backpropagation + optimize self.reset_grad() d_loss = real_loss + fake_loss d_loss.backward() self.d_optimizer.step() # ===================== Train G =====================# noise = torch.randn(batch_size, self.z_dim, device=self.device) # Train G so that D recognizes G(z) as real. fake_images = self.generator(noise) outputs = self.discriminator(fake_images) g_loss = self.least_square_loss(outputs, 1) # Backpropagation + optimize self.reset_grad() g_loss.backward() self.g_optimizer.step() # print the log info via progress bar progress_bar( i, total_step, 'd_real_loss: %.4f | d_fake_loss: %.4f | g_loss: %.4f' % (real_loss.item(), fake_loss.item(), g_loss.item())) # save the sampled images self.save_fakes(step=i, epoch=epoch) # save the model parameters for each epoch self.save_model(epoch=epoch) def sample(self): # Load trained parameters g_path = os.path.join(self.model_path, 'generator-%d.pkl' % self.num_epochs) d_path = os.path.join(self.model_path, 'discriminator-%d.pkl' % self.num_epochs) self.generator.load_state_dict(torch.load(g_path)) self.discriminator.load_state_dict(torch.load(d_path)) self.generator.eval() self.discriminator.eval() # Sample the images noise = torch.randn(self.sample_size, self.z_dim, device=self.device) with torch.no_grad(): fake_images = self.generator(noise) sample_path = os.path.join(self.sample_path, 'fake_samples-final.png') torchvision.utils.save_image(self.de_normalize(fake_images.data), sample_path, nrow=12) print("Saved sampled images to '%s'" % sample_path)
def main(args): # Load the data (DataLoader object) path_monnet = args.Monet_Path path_pictures = args.Pictures_Path save_path = args.Save_Path batch_size = args.batch_size n_epochs = args.epochs device = args.device dataset = get_data_loader(path_monnet, path_pictures, batch_size) # Create Generators and Discriminators and put them on GPU/TPU generator_AB = Generator().to(device) generator_BA = Generator().to(device) discriminator_A = Discriminator().to(device) discriminator_B = Discriminator().to(device) generator_AB.apply(weights_init_normal) generator_BA.apply(weights_init_normal) discriminator_A.apply(weights_init_normal) discriminator_B.apply(weights_init_normal) # Set optimizers G_optimizer = torch.optim.Adam(itertools.chain(generator_AB.parameters(), generator_BA.parameters()), lr=2e-4) D_optimizer = torch.optim.Adam(itertools.chain( discriminator_A.parameters(), discriminator_B.parameters()), lr=2e-4) # Set trainer trainer = Trainer( generator_ab=generator_AB, generator_ba=generator_BA, discriminator_a=discriminator_A, discriminator_b=discriminator_B, generator_optimizer=G_optimizer, discriminator_optimizer=D_optimizer, n_epochs=n_epochs, dataloader=dataset, device=device, ) # Launch Training trainer.train() # Save the model and the loss during training # Save logs trainer.log.save(os.path.join(save_path, 'save_loss.txt')) # Save the model torch.save(generator_AB.state_dict(), os.path.join(save_path, 'generator_AB.pt')) torch.save(generator_BA.state_dict(), os.path.join(save_path, 'generator_BA.pt')) torch.save(discriminator_A.state_dict(), os.path.join(save_path, 'discriminator_A.pt')) torch.save(discriminator_B.state_dict(), os.path.join(save_path, 'discriminator_B.pt'))
def weights_init(m): classname = m.__class__.__name__ if classname.find('Conv') != -1: m.weight.data.normal_(0.0, 0.02) elif classname.find('BatchNorm') != -1: m.weight.data.normal_(1.0, 0.02) m.bias.data.fill_(0) netG = Generator(ngpu).to(device) netG.apply(weights_init) # load weights to test the model # netG.load_state_dict(torch.load('weights/netG_epoch_24.pth')) print(netG) netD = Discriminator(ngpu).to(device) netD.apply(weights_init) # load weights to test the model # netD.load_state_dict(torch.load('weights/netD_epoch_24.pth')) print(netD) criterion = nn.BCELoss() # setup optimizer optimizerD = optim.Adam(netD.parameters(), lr=0.0001, betas=(0.5, 0.999)) optimizerG = optim.Adam(netG.parameters(), lr=0.0001, betas=(0.5, 0.999)) fixed_noise = torch.randn(128, nz, 1, 1, device=device) real_label = 1 fake_label = 0
default=10, help="interval between everytime logging the G/D loss.") parser.add_argument("--save_interval", type=int, default=625, help="interval to save the models") opt = parser.parse_args() img_shape = (opt.channels, opt.img_size, opt.img_size) device = utils.selectDevice() # Loss function adversarial_loss = torch.nn.BCELoss().to(device) # Initialize generator and discriminator generator, discriminator = Generator(img_shape).to(device), Discriminator( img_shape).to(device) generator.apply(weights_init_normal) discriminator.apply(weights_init_normal) # Configure data loader dataset = dataset.CelebA("./hw3_data/face/", utils.faceFeatures[0], transform=transforms.Compose([transforms.ToTensor()])) dataloader = DataLoader(dataset, batch_size=opt.batch_size, shuffle=True, num_workers=opt.n_cpu) # Optimizers optimizer_G = torch.optim.Adam(generator.parameters(), lr=opt.lr,