Пример #1
0
def test_project():
    from GISops import project
    from shapely.geometry import Point

    points = map(Point, zip(range(5), range(5)))
    result = project(points, '+init=epsg:26916', '+init=epsg:4269')
    pointsl = list(zip(np.linspace(3e5, 4e5, 10), np.linspace(5e6, 5.1e6, 10)))
    points = np.array(list(map(Point, pointsl)), dtype=object)
    result = project(points, '+init=epsg:26916', '+init=epsg:4269')
    result_inv = project(result, '+init=epsg:4269', '+init=epsg:26916')
    result_inva = np.array([np.squeeze(p.xy) for p in result_inv])
    assert (np.array(pointsl) - result_inva).sum() < 1e-6
Пример #2
0
def test_project():
    from GISops import project
    from shapely.geometry import Point

    points = map(Point, zip(range(5), range(5)))
    result = project(points, '+init=epsg:26916', '+init=epsg:4269')
    pointsl = list(zip(np.linspace(3e5, 4e5, 10), np.linspace(5e6, 5.1e6, 10)))
    points = np.array(list(map(Point, pointsl)), dtype=object)
    result = project(points, '+init=epsg:26916', '+init=epsg:4269')
    result_inv = project(result, '+init=epsg:4269', '+init=epsg:26916')
    result_inva = np.array([np.squeeze(p.xy) for p in result_inv])
    assert (np.array(pointsl)- result_inva).sum() < 1e-6
Пример #3
0
    def set_extent(self,
                   ncfile,
                   model_extent,
                   model_extent_buffer=1000,
                   reduce=1):

        print 'setting extent to {}\n\tusing points in {}...'.format(
            model_extent, ncfile)
        f = netCDF4.Dataset(ncfile)

        # read geometry of model extent; project to coordinate system of netCDF data
        model_proj4 = get_proj4(model_extent)
        model_extent = shape(fiona.open(model_extent).next()['geometry'])
        model_extent = project(model_extent, model_proj4, self.proj4)
        model_extent_buff = model_extent.buffer(model_extent_buffer)

        # get x and y locations
        X, Y = f.variables[self.x_col], f.variables[self.y_col]

        # build a mask for data; exclude points outside the model bounding box
        xreduce = np.array([False] * len(X))
        yreduce = np.array([False] * len(Y))
        xreduce[::reduce] = True
        yreduce[::reduce] = True

        xinds = (X[:] > model_extent_buff.bounds[0]) & (
            X[:] < model_extent_buff.bounds[2]) & xreduce
        yinds = (Y[:] > model_extent_buff.bounds[1]) & (
            Y[:] < model_extent_buff.bounds[3]) & yreduce

        # get a variable in the file being used to set the extent
        # (must have t, x, y dimensions)
        varname = [k for k, v in f.variables.items() if len(v.shape) == 3][0]
        var = f.variables[varname]
        var_rs = np.reshape(var[0, yinds, xinds],
                            (len(X[xinds]) * len(Y[yinds])))

        bbox_points_xy = np.reshape(np.meshgrid(X[xinds], Y[yinds]),
                                    (2, len(X[xinds]) * len(Y[yinds])))
        bbox_points = [
            Point(bbox_points_xy[0, i], bbox_points_xy[1, i])
            for i in range(np.shape(bbox_points_xy)[1])
        ]

        # create boolean index of whether points are in model extent and not masked in dayment
        within = np.array([
            p.within(model_extent) if not var_rs.mask[i] else False
            for i, p in enumerate(bbox_points)
        ])

        self._xinds = xinds  # indices of points within model bounding box
        self._yinds = yinds
        self._allX = X  # all x, y coordinates within netcdf dataset
        self._allY = Y
        self._within = within  # boolean array indicating points within model extent
        self.X = bbox_points_xy[0, within]
        self.Y = bbox_points_xy[1, within]
Пример #4
0
    def _compute_geometries(self, df):

        geoms = []
        for i in range(len(df)):

            p = Point(df.dec_long_va[i], df.dec_lat_va[i])
            pr1 = "+init=EPSG:{}".format(coord_datums_epsg[df.dec_coord_datum_cd[i]])
            pr2 = self.proj4
            geom = project(p, pr1, pr2)
            geoms.append(geom)
        return geoms
Пример #5
0
Файл: nwis.py Проект: aleaf/NWIS
    def _compute_geometries(self, df):

        geoms = []
        for i in range(len(df)):

            p = Point(df.dec_long_va[i], df.dec_lat_va[i])
            pr1 = "+init=EPSG:{}".format(coord_datums_epsg[df.dec_coord_datum_cd[i]])
            pr2 = self.proj4
            geom = project(p, pr1, pr2)
            geoms.append(geom)
        return geoms
Пример #6
0
    def _read_extent_shapefile(self, shpfile, buffer=0):

        import fiona
        from fiona.crs import to_string, from_epsg

        print('reading extent from {}...'.format(shpfile))
        shp = fiona.open(shpfile)
        g = shape(shp.next()['geometry'])

        if to_string(from_epsg(coord_datums_epsg[self.datum])) != to_string(shp.crs):
            print('reprojecting extent from {} to {}'.format(to_string(shp.crs), self.proj4))
            return project(g, to_string(shp.crs), self.proj4)
        else:
            return g
Пример #7
0
Файл: nwis.py Проект: aleaf/NWIS
    def _read_extent_shapefile(self, shpfile, buffer=0):

        import fiona
        from fiona.crs import to_string, from_epsg

        print('reading extent from {}...'.format(shpfile))
        shp = fiona.open(shpfile)
        g = shape(shp.next()['geometry'])

        if to_string(from_epsg(coord_datums_epsg[self.datum])) != to_string(shp.crs):
            print('reprojecting extent from {} to {}'.format(to_string(shp.crs), self.proj4))
            return project(g, to_string(shp.crs), self.proj4)
        else:
            return g
Пример #8
0
    def set_extent(self, ncfile, model_extent, model_extent_buffer=1000, reduce=1):

        print('setting extent to {}\n\tusing points in {}...'.format(model_extent, ncfile))
        f = netCDF4.Dataset(ncfile)
        
        # read geometry of model extent; project to coordinate system of netCDF data
        model_proj4 = get_proj4(model_extent)
        model_extent = shape(fiona.open(model_extent).next()['geometry'])
        model_extent = project(model_extent, model_proj4, self.proj4)
        model_extent_buff = model_extent.buffer(model_extent_buffer)

        # get x and y locations
        X, Y = f.variables[self.x_col], f.variables[self.y_col]

        # build a mask for data; exclude points outside the model bounding box
        xreduce = np.array([False] * len(X))
        yreduce = np.array([False] * len(Y))
        xreduce[::reduce] = True
        yreduce[::reduce] = True

        xinds = (X[:] > model_extent_buff.bounds[0]) & (X[:] < model_extent_buff.bounds[2]) & xreduce
        yinds = (Y[:] > model_extent_buff.bounds[1]) & (Y[:] < model_extent_buff.bounds[3]) & yreduce

        # get a variable in the file being used to set the extent
        # (must have t, x, y dimensions)
        varname = [k for k, v in list(f.variables.items()) if len(v.shape) == 3][0]
        var = f.variables[varname]
        var_rs = np.reshape(var[0, yinds, xinds], (len(X[xinds]) * len(Y[yinds])))

        bbox_points_xy = np.reshape(np.meshgrid(X[xinds], Y[yinds]), (2, len(X[xinds]) * len(Y[yinds])))
        bbox_points = [Point(bbox_points_xy[0, i], bbox_points_xy[1, i]) for i in range(np.shape(bbox_points_xy)[1])]

        # create boolean index of whether points are in model extent and not masked in dayment
        within = np.array([p.within(model_extent)
                           if not var_rs.mask[i]
                           else False for i, p in enumerate(bbox_points)])


        self._xinds = xinds # indices of points within model bounding box
        self._yinds = yinds
        self._allX = X # all x, y coordinates within netcdf dataset
        self._allY = Y
        self._within = within # boolean array indicating points within model extent
        self.X = bbox_points_xy[0, within]
        self.Y = bbox_points_xy[1, within]
Пример #9
0
    def __init__(
        self,
        NHDFlowline,
        PlusFlowlineVAA,
        PlusFlow,
        mf_grid=None,
        mf_grid_node_col=None,
        nrows=None,
        ncols=None,
        mfdis=None,
        xul=None,
        yul=None,
        rot=0,
        model_domain=None,
        flowlines_proj4=None,
        mfgrid_proj4=None,
        domain_proj4=None,
        mf_units_mult=1,
    ):
        """Class for working with information from NHDPlus v2.
        See the user's guide for more information:
        <http://www.horizon-systems.com/NHDPlus/NHDPlusV2_documentation.php#NHDPlusV2 User Guide>

        Parameters
        ==========
        NHDFlowline : str, list of strings or dataframe
            Shapefile, list of shapefiles, or dataframe defining SFR network;
            assigned to the Flowline attribute.
        PlusFlowlineVAA : str, list of strings or dataframe
            DBF file, list of DBF files with NHDPlus attribute information;
            assigned to PlusFlowlineVAA attribute.
        PlusFlow : str, list of strings or dataframe
            DBF file, list of DBF files with routing information;
            assigned to PlusFlow attribute.
        mf_grid : str or dataframe
            Shapefile or dataframe containing MODFLOW grid
        mf_grid_node_col : str
            Column in grid shapefile or dataframe with unique node numbers.
            In case the grid isn't sorted!
            (which will result in mixup if rows and columns are assigned later using the node numbers)
        nrows : int
            (structured grids) Number of model rows
        ncols : int
            (structured grids) Number of model columns
        mfdis : str
            MODFLOW discretization file (not yet supported for this class)
        xul : float, optional
            x offset of upper left corner of grid. Only needed if using mfdis instead of shapefile
        yul : float, optional
            y offset of upper left corner of grid. Only needed if using mfdis instead of shapefile
        rot : float, optional (default 0)
            Grid rotation; only needed if using mfdis instead of shapefile.
        model_domain : str (shapefile) or shapely polygon, optional
            Polygon defining area in which to create SFR cells.
            Default is to create SFR at all intersections between the model grid and NHD flowlines.
        flowlines_proj4 : str, optional
            Proj4 string for coordinate system of NHDFlowlines.
            Only needed if flowlines are supplied in a dataframe.
        domain_proj4 : str, optional
            Proj4 string for coordinate system of model_domain.
            Only needed if model_domain is supplied as a polygon.
        mf_units_mult : float
            multiplier to convert GIS units to MODFLOW units
        """
        self.Flowline = NHDFlowline
        self.PlusFlowlineVAA = PlusFlowlineVAA

        self.PlusFlow = PlusFlow
        self.fl_cols = [
            "COMID",
            "FCODE",
            "FDATE",
            "FLOWDIR",
            "FTYPE",
            "GNIS_ID",
            "GNIS_NAME",
            "LENGTHKM",
            "REACHCODE",
            "RESOLUTION",
            "WBAREACOMI",
            "geometry",
        ]
        self.pfvaa_cols = ["ArbolateSu", "Hydroseq", "DnHydroseq", "LevelPathI", "StreamOrde"]

        self.mf_grid = mf_grid
        self.model_domain = model_domain
        self.nrows = nrows
        self.ncols = ncols
        self.mfdis = mfdis
        self.xul = xul
        self.yul = yul
        self.rot = rot
        self.mf_units_mult = mf_units_mult
        self.GISunits = None
        self.to_km = None  # converts GIS units to km for arbolate sum

        self.fl_proj4 = flowlines_proj4
        self.mf_grid_proj4 = mfgrid_proj4
        self.domain_proj4 = domain_proj4

        print "Reading input..."
        # handle dataframes or shapefiles as arguments
        # get proj4 for any shapefiles that are submitted
        for attr, input in {"fl": NHDFlowline, "pf": PlusFlow, "pfvaa": PlusFlowlineVAA, "grid": mf_grid}.iteritems():
            if isinstance(input, pd.DataFrame):
                self.__dict__[attr] = input
            else:
                self.__dict__[attr] = shp2df(input)
        if isinstance(model_domain, Polygon):
            self.domain = model_domain
        else:
            self.domain = shape(fiona.open(model_domain).next()["geometry"])
            self.domain_proj4 = get_proj4(model_domain)

        # sort and pair down the grid
        if mf_grid_node_col is not None:
            self.grid.sort(mf_grid_node_col, inplace=True)
            self.grid.index = self.grid[mf_grid_node_col].values
        self.grid = self.grid[["geometry"]]

        # get projections
        if self.mf_grid_proj4 is None and not isinstance(mf_grid, pd.DataFrame):
            self.mf_grid_proj4 = get_proj4(mf_grid)
        if self.fl_proj4 is None:
            if isinstance(NHDFlowline, list):
                self.fl_proj4 = get_proj4(NHDFlowline[0])
            elif not isinstance(NHDFlowline, pd.DataFrame):
                self.fl_proj4 = get_proj4(NHDFlowline)

        # set the indices
        for attr, index in {"fl": "COMID", "pfvaa": "ComID"}.iteritems():
            if not self.__dict__[attr].index.name == index:
                self.__dict__[attr].index = self.__dict__[attr][index]

        # first check that grid is in projected units
        if self.mf_grid_proj4.split("proj=")[1].split()[0].strip() == "longlat":
            raise ProjectionError(self.mf_grid)

        # reproject the NHD Flowlines and model domain to model grid if they aren't
        # (prob a better way to check for same projection)

        # set GIS units from modflow grid projection (used for arbolate sum computation)
        # assumes either m or ft!
        self.GISunits = parse_proj4_units(self.mf_grid_proj4)
        self.to_km = [0.001 if self.GISunits == "m" else 0.001 / 0.3048][0]

        if different_projections(self.fl_proj4, self.mf_grid_proj4):
            print "reprojecting NHDFlowlines from\n{}\nto\n{}...".format(self.fl_proj4, self.mf_grid_proj4)
            self.fl["geometry"] = projectdf(self.fl, self.fl_proj4, self.mf_grid_proj4)

        if model_domain is not None and different_projections(self.domain_proj4, self.mf_grid_proj4):
            print "reprojecting model domain from\n{}\nto\n{}...".format(self.domain_proj4, self.mf_grid_proj4)
            self.domain = project(self.domain, self.domain_proj4, self.mf_grid_proj4)
Пример #10
0
    def __init__(self, NHDFlowline, PlusFlowlineVAA, PlusFlow,
                 mf_grid=None, mf_grid_node_col=None,
                 nrows=None, ncols=None,
                 mfdis=None, xul=None, yul=None, rot=0,
                 model_domain=None,
                 flowlines_proj4=None, mfgrid_proj4=None, domain_proj4=None,
                 mf_units_mult=1):
        """Class for working with information from NHDPlus v2.
        See the user's guide for more information:
        <http://www.horizon-systems.com/NHDPlus/NHDPlusV2_documentation.php#NHDPlusV2 User Guide>

        Parameters
        ==========
        NHDFlowline : str, list of strings or dataframe
            Shapefile, list of shapefiles, or dataframe defining SFR network;
            assigned to the Flowline attribute.
        PlusFlowlineVAA : str, list of strings or dataframe
            DBF file, list of DBF files with NHDPlus attribute information;
            assigned to PlusFlowlineVAA attribute.
        PlusFlow : str, list of strings or dataframe
            DBF file, list of DBF files with routing information;
            assigned to PlusFlow attribute.
        mf_grid : str or dataframe
            Shapefile or dataframe containing MODFLOW grid
        mf_grid_node_col : str
            Column in grid shapefile or dataframe with unique node numbers.
            In case the grid isn't sorted!
            (which will result in mixup if rows and columns are assigned later using the node numbers)
        nrows : int
            (structured grids) Number of model rows
        ncols : int
            (structured grids) Number of model columns
        mfdis : str
            MODFLOW discretization file (not yet supported for this class)
        xul : float, optional
            x offset of upper left corner of grid. Only needed if using mfdis instead of shapefile
        yul : float, optional
            y offset of upper left corner of grid. Only needed if using mfdis instead of shapefile
        rot : float, optional (default 0)
            Grid rotation; only needed if using mfdis instead of shapefile.
        model_domain : str (shapefile) or shapely polygon, optional
            Polygon defining area in which to create SFR cells.
            Default is to create SFR at all intersections between the model grid and NHD flowlines.
        flowlines_proj4 : str, optional
            Proj4 string for coordinate system of NHDFlowlines.
            Only needed if flowlines are supplied in a dataframe.
        domain_proj4 : str, optional
            Proj4 string for coordinate system of model_domain.
            Only needed if model_domain is supplied as a polygon.
        mf_units_mult : float
            multiplier to convert GIS units to MODFLOW units
        """
        self.Flowline = NHDFlowline
        self.PlusFlowlineVAA = PlusFlowlineVAA

        self.PlusFlow = PlusFlow
        self.fl_cols = ['COMID', 'FCODE', 'FDATE', 'FLOWDIR',
                          'FTYPE', 'GNIS_ID', 'GNIS_NAME', 'LENGTHKM',
                          'REACHCODE', 'RESOLUTION', 'WBAREACOMI', 'geometry']
        self.pfvaa_cols = ['ArbolateSu', 'Hydroseq', 'DnHydroseq',
                      'LevelPathI', 'StreamOrde']

        self.mf_grid = mf_grid
        self.model_domain = model_domain
        self.nrows = nrows
        self.ncols = ncols
        self.mfdis = mfdis
        self.xul = xul
        self.yul = yul
        self.rot = rot
        self.mf_units_mult = mf_units_mult
        self.GISunits = None
        self.to_km = None # converts GIS units to km for arbolate sum

        self.fl_proj4 = flowlines_proj4
        self.mf_grid_proj4 = mfgrid_proj4
        self.domain_proj4 = domain_proj4

        print "Reading input..."
        # handle dataframes or shapefiles as arguments
        # get proj4 for any shapefiles that are submitted
        for attr, input in {'fl': NHDFlowline,
                            'pf': PlusFlow,
                            'pfvaa': PlusFlowlineVAA,
                            'grid': mf_grid}.iteritems():
            if isinstance(input, pd.DataFrame):
                self.__dict__[attr] = input
            else:
                self.__dict__[attr] = shp2df(input)
        if isinstance(model_domain, Polygon):
            self.domain = model_domain
        elif isinstance(model_domain, str):
            self.domain = shape(fiona.open(model_domain).next()['geometry'])
            self.domain_proj4 = get_proj4(model_domain)
        else:
            #print 'setting model domain to extent of grid...'
            #self.domain = unary_union(self.grid.geometry.tolist())

        # sort and pair down the grid
        if mf_grid_node_col is not None:
            self.grid.sort(mf_grid_node_col, inplace=True)
            self.grid.index = self.grid[mf_grid_node_col].values
        self.grid = self.grid[['geometry']]

        # get projections
        if self.mf_grid_proj4 is None and not isinstance(mf_grid, pd.DataFrame):
            self.mf_grid_proj4 = get_proj4(mf_grid)
        if self.fl_proj4 is None:
            if isinstance(NHDFlowline, list):
                self.fl_proj4 = get_proj4(NHDFlowline[0])
            elif not isinstance(NHDFlowline, pd.DataFrame):
                self.fl_proj4 = get_proj4(NHDFlowline)

        # set the indices
        for attr, index in {'fl': 'COMID', 'pfvaa': 'ComID'}.iteritems():
            if not self.__dict__[attr].index.name == index:
                self.__dict__[attr].index = self.__dict__[attr][index]

        # first check that grid is in projected units
        if self.mf_grid_proj4.split('proj=')[1].split()[0].strip() == 'longlat':
            raise ProjectionError(self.mf_grid)

        # reproject the NHD Flowlines and model domain to model grid if they aren't
        # (prob a better way to check for same projection)

        # set GIS units from modflow grid projection (used for arbolate sum computation)
        # assumes either m or ft!
        self.GISunits = parse_proj4_units(self.mf_grid_proj4)
        self.to_km = [0.001 if self.GISunits == 'm' else 0.001/0.3048][0]

        if different_projections(self.fl_proj4, self.mf_grid_proj4):
            print "reprojecting NHDFlowlines from\n{}\nto\n{}...".format(self.fl_proj4, self.mf_grid_proj4)
            self.fl['geometry'] = projectdf(self.fl, self.fl_proj4, self.mf_grid_proj4)

        if model_domain is not None \
                and different_projections(self.domain_proj4, self.mf_grid_proj4):
            print "reprojecting model domain from\n{}\nto\n{}...".format(self.domain_proj4, self.mf_grid_proj4)
            self.domain = project(self.domain, self.domain_proj4, self.mf_grid_proj4)



    def list_updown_comids(self):

        # setup local variables and cull plusflow table to comids in model
        comids = self.df.index.tolist()
        pf = self.pf.ix[(self.pf.FROMCOMID.isin(comids)) |
                        (self.pf.TOCOMID.isin(comids))].copy()

        # subset PlusFlow entries for comids that are not in flowlines dataset
        # comids may be missing because they are outside of the model
        # or if the flowlines dataset was edited (resulting in breaks in the routing)
        missing_tocomids = ~pf.TOCOMID.isin(comids) & (pf.TOCOMID != 0)
        missing = pf.ix[missing_tocomids, ['FROMCOMID', 'TOCOMID']].copy()
        # recursively crawl the PlusFlow table
        # to try to find a downstream comid in the flowlines dataest
        missing['nextCOMID'] = [find_next(tc, self.pf, comids) for tc in missing.TOCOMID]
        pf.loc[missing_tocomids, 'TOCOMID'] = missing.nextCOMID

        # set any remaining comids not in model to zero
        # (outlets or inlets from outside model)
        #pf.loc[~pf.TOCOMID.isin(comids), 'TOCOMID'] = 0 (these should all be handled above)
        pf.loc[~pf.FROMCOMID.isin(comids), 'FROMCOMID'] = 0
        tocomid = pf.TOCOMID.values
        fromcomid = pf.FROMCOMID.values
        self.df['dncomids'] = [tocomid[fromcomid == c].tolist() for c in comids]
        self.df['upcomids'] = [fromcomid[tocomid == c].tolist() for c in comids]

    def assign_segments(self):

        # create segment numbers
        self.df.sort('COMID', inplace=True)
        self.df['segment'] = np.arange(len(self.df)) + 1

        # reduce dncomids to 1 per segment
        braids = self.df[np.array([len(d) for d in self.df.dncomids]) > 1]
        for i, r in braids.iterrows():
            # select the dncomid that has a matching levelpath
            matching_levelpaths = np.array(r.dncomids)[self.df.ix[self.df.COMID.isin(r.dncomids), 'LevelPathI'].values
                                             == r.LevelPathI]
            # if none match, select the first dncomid
            if len(matching_levelpaths) == 0:
                matching_levelpaths = [r.dncomids[0]]

            self.df.set_value(i, 'dncomids', matching_levelpaths)

        # assign upsegs and outsegs based on NHDPlus routing
        self.df['upsegs'] = [[self.df.segment[c] if c !=0 else 0 for c in comids] for comids in self.df.upcomids]
        self.df['dnsegs'] = [[self.df.segment[c] if c !=0 else 0 for c in comids] for comids in self.df.dncomids]

        # make a column of outseg integers
        self.df['outseg'] = [d[0] for d in self.df.dnsegs]
        self.df.sort('segment', inplace=True)

    def to_sfr(self, roughness=0.037, streambed_thickness=1, streambedK=1,
               icalc=1,
               iupseg=0, iprior=0, nstrpts=0, flow=0, runoff=0, etsw=0, pptsw=0,
               roughch=0, roughbk=0, cdepth=0, fdepth=0, awdth=0, bwdth=0):


        # create a working dataframe
        self.df = self.fl[self.fl_cols].join(self.pfvaa[self.pfvaa_cols], how='inner')

        print '\nclipping flowlines to active area...'
        inside = [g.intersects(self.domain) for g in self.df.geometry]
        self.df = self.df.ix[inside].copy()
        self.df.sort('COMID', inplace=True)
        flowline_geoms = self.df.geometry.tolist()
        grid_geoms = self.grid.geometry.tolist()

        print "intersecting flowlines with grid cells..."
        grid_intersections = GISops.intersect_rtree(grid_geoms, flowline_geoms)

        print "setting up segments..."
        self.list_updown_comids()
        self.assign_segments()
        fl_segments = self.df.segment.tolist()
        fl_comids = self.df.COMID.tolist()

        m1 = make_mat1(flowline_geoms, fl_segments, fl_comids, grid_intersections, grid_geoms)

        print "computing widths..."
        m1['length'] = np.array([g.length for g in m1.geometry])
        lengths = m1[['segment', 'length']].copy()
        groups = lengths.groupby('segment')
        reach_asums = np.concatenate([np.cumsum(grp.length.values[::-1])[::-1] for s, grp in groups])
        segment_asums = np.array([self.df.ArbolateSu.values[s-1] for s in m1.segment.values])
        reach_asums = -1 * self.to_km * reach_asums + segment_asums # arbolate sums are computed in km
        width = width_from_arbolate(reach_asums) # widths are returned in m
        if self.GISunits != 'm':
            width = width / 0.3048
        m1['width'] = width * self.mf_units_mult
        m1['length'] = m1.length * self.mf_units_mult

        m1['roughness'] = roughness
        m1['sbthick'] = streambed_thickness
        m1['sbK'] = streambedK
        m1['sbtop'] = 0

        if self.nrows is not None:
            m1['row'] = np.floor(m1.node / self.ncols) + 1
        if self.ncols is not None:
            column = m1.node.values % self.ncols
            column[column == 0] = self.ncols # last column has remainder of 0
            m1['column'] = column
        m1['layer'] = 1

        self.m1 = m1

        print "setting up Mat2..."
        self.m2 = self.df[['segment', 'outseg']]
        self.m2['icalc'] = icalc
        self.m2.index = self.m2.segment
        print 'Done'

    def write_tables(self, basename='SFR'):
        """Write tables with SFR reach (Mat1) and segment (Mat2) information out to csv files.

        Parameters
        ----------
        basename: string
            e.g. Mat1 is written to <basename>Mat1.csv
        """
        m1_cols = ['node', 'layer', 'segment', 'reach', 'sbtop', 'width', 'length', 'sbthick', 'sbK', 'roughness', 'reachID']
        m2_cols = ['segment', 'icalc', 'outseg']
        if self.nrows is not None:
            m1_cols.insert(1, 'row')

        if self.ncols is not None:
            m1_cols.insert(2, 'column')
        print "writing Mat1 to {0}{1}, Mat2 to {0}{2}".format(basename, 'Mat1.csv', 'Mat2.csv')
        self.m1[m1_cols].to_csv(basename + 'Mat1.csv', index=False)
        self.m2[m2_cols].to_csv(basename + 'Mat2.csv', index=False)

    def write_linework_shapefile(self, basename='SFR'):
        """Write a shapefile containing linework for each SFR reach,
        with segment, reach, model node number, and NHDPlus COMID attribute information

        Parameters
        ----------
        basename: string
            Output will be written to <basename>.shp
        """
        print "writing reach geometries to {}".format(basename+'.shp')
        df2shp(self.m1[['reachID', 'node', 'segment', 'reach', 'comid', 'geometry']],
               basename+'.shp', proj4=self.mf_grid_proj4)
Пример #11
0
    def __init__(self, NHDFlowline=None, PlusFlowlineVAA=None, PlusFlow=None, NHDFcode=None,
                 elevslope=None,
                 mf_grid=None, mf_grid_node_col=None,
                 nrows=None, ncols=None,
                 mfdis=None, xul=None, yul=None, rot=0,
                 model_domain=None,
                 flowlines_proj4=None, mfgrid_proj4=None, domain_proj4=None,
                 mf_units='feet'):
        """Class for working with information from NHDPlus v2.
        See the user's guide for more information:
        <http://www.horizon-systems.com/NHDPlus/NHDPlusV2_documentation.php#NHDPlusV2 User Guide>

        Parameters
        ==========
        NHDFlowline : str, list of strings or dataframe
            Shapefile, list of shapefiles, or dataframe defining SFR network;
            assigned to the Flowline attribute.
        PlusFlowlineVAA : str, list of strings or dataframe
            DBF file, list of DBF files with NHDPlus attribute information;
            assigned to PlusFlowlineVAA attribute.
        PlusFlow : str, list of strings or dataframe
            DBF file, list of DBF files with routing information;
            assigned to PlusFlow attribute.
        mf_grid : str or dataframe
            Shapefile or dataframe containing MODFLOW grid
        mf_grid_node_col : str
            Column in grid shapefile or dataframe with unique node numbers.
            In case the grid isn't sorted!
            (which will result in mixup if rows and columns are assigned later using the node numbers)
        nrows : int
            (structured grids) Number of model rows
        ncols : int
            (structured grids) Number of model columns
        mfdis : str
            MODFLOW discretization file (not yet supported for this class)
        xul : float, optional
            x offset of upper left corner of grid. Only needed if using mfdis instead of shapefile
        yul : float, optional
            y offset of upper left corner of grid. Only needed if using mfdis instead of shapefile
        rot : float, optional (default 0)
            Grid rotation; only needed if using mfdis instead of shapefile.
        model_domain : str (shapefile) or shapely polygon, optional
            Polygon defining area in which to create SFR cells.
            Default is to create SFR at all intersections between the model grid and NHD flowlines.
        flowlines_proj4 : str, optional
            Proj4 string for coordinate system of NHDFlowlines.
            Only needed if flowlines are supplied in a dataframe.
        domain_proj4 : str, optional
            Proj4 string for coordinate system of model_domain.
            Only needed if model_domain is supplied as a polygon.
        mf_units : str, 'feet' or 'meters'
            Length units of MODFLOW model
        """
        self.Flowline = NHDFlowline
        self.PlusFlowlineVAA = PlusFlowlineVAA

        self.PlusFlow = PlusFlow
        self.elevslope = elevslope
        self.fl_cols = ['COMID', 'FCODE', 'FDATE', 'FLOWDIR',
                          'FTYPE', 'GNIS_ID', 'GNIS_NAME', 'LENGTHKM',
                          'REACHCODE', 'RESOLUTION', 'WBAREACOMI', 'geometry']
        self.pfvaa_cols = ['ArbolateSu', 'Hydroseq', 'DnHydroseq',
                      'LevelPathI', 'StreamOrde']

        self.mf_grid = mf_grid
        self.model_domain = model_domain
        self.nrows = nrows
        self.ncols = ncols
        self.mfdis = mfdis
        self.xul = xul
        self.yul = yul
        self.rot = rot

        # unit conversions (set below after grid projection is verified)
        self.mf_units = mf_units
        self.mf_units_mult = 1.0 # go from GIS units to model units
        self.GISunits = None #
        self.to_km = None # converts GIS units to km for arbolate sum

        self.fl_proj4 = flowlines_proj4
        self.mf_grid_proj4 = mfgrid_proj4
        self.domain_proj4 = domain_proj4

        print("Reading input...")
        # handle dataframes or shapefiles as arguments
        # get proj4 for any shapefiles that are submitted
        for attr, input in {'fl': NHDFlowline,
                            'pf': PlusFlow,
                            'pfvaa': PlusFlowlineVAA,
                            'elevs': elevslope,
                            'grid': mf_grid}.items():
            if isinstance(input, pd.DataFrame):
                self.__dict__[attr] = input
            else:
                self.__dict__[attr] = shp2df(input)
        if isinstance(model_domain, Polygon):
            self.domain = model_domain
        elif isinstance(model_domain, str):
            self.domain = shape(fiona.open(model_domain).next()['geometry'])
            self.domain_proj4 = get_proj4(model_domain)
        else:
            print('setting model domain to extent of grid ' \
                  'by performing unary union of grid cell geometries...\n' \
                  '(may take a few minutes for large grids)')
            # add tiny buffer to overcome floating point errors in gridcell geometries
            # (otherwise a multipolygon feature may be returned)
            geoms = [g.buffer(0.001) for g in self.grid.geometry.tolist()]
            self.domain = unary_union(geoms)

        # sort and pair down the grid
        if mf_grid_node_col is not None:
            self.grid.sort_values(by=mf_grid_node_col, inplace=True)
            self.grid.index = self.grid[mf_grid_node_col].values
        else:
            print('Warning: Node field for grid shape file not supplied. \
                  Node numbers will be assigned using index. \
                  This may result in incorrect location of SFR reaches.')
        self.grid = self.grid[['geometry']]

        # get projections
        if self.mf_grid_proj4 is None and not isinstance(mf_grid, pd.DataFrame):
            self.mf_grid_proj4 = get_proj4(mf_grid)
        if self.fl_proj4 is None:
            if isinstance(NHDFlowline, list):
                self.fl_proj4 = get_proj4(NHDFlowline[0])
            elif not isinstance(NHDFlowline, pd.DataFrame):
                self.fl_proj4 = get_proj4(NHDFlowline)

        # set the indices
        for attr, index in {'fl': 'COMID',
                            'pfvaa': 'ComID',
                            'elevs': 'COMID'}.items():
            if not self.__dict__[attr].index.name == index:
                self.__dict__[attr].index = self.__dict__[attr][index]

        # first check that grid is in projected units
        if self.mf_grid_proj4.split('proj=')[1].split()[0].strip() == 'longlat':
            raise ProjectionError(self.mf_grid)

        # reproject the NHD Flowlines and model domain to model grid if they aren't
        # (prob a better way to check for same projection)

        # set GIS units from modflow grid projection (used for arbolate sum computation)
        # assumes either m or ft!
        self.GISunits = parse_proj4_units(self.mf_grid_proj4)
        self.mf_units_mult = 1/0.3048 if self.GISunits == 'm' and self.mf_units == 'feet' \
                             else 0.3048 if not self.GISunits == 'm' and self.mf_units == 'meters' \
                             else 1.0
        self.to_km = 0.001 if self.GISunits == 'm' else 0.001/0.3048

        # convert the elevations from elevslope table
        self.elevs['Max'] = self.elevs.MAXELEVSMO * self.convert_elevslope_to_model_units[self.mf_units]
        self.elevs['Min'] = self.elevs.MINELEVSMO * self.convert_elevslope_to_model_units[self.mf_units]

        if different_projections(self.fl_proj4, self.mf_grid_proj4):
            print("reprojecting NHDFlowlines from\n{}\nto\n{}...".format(self.fl_proj4, self.mf_grid_proj4))
            self.fl['geometry'] = projectdf(self.fl, self.fl_proj4, self.mf_grid_proj4)

        if model_domain is not None \
                and different_projections(self.domain_proj4, self.mf_grid_proj4):
            print("reprojecting model domain from\n{}\nto\n{}...".format(self.domain_proj4, self.mf_grid_proj4))
            self.domain = project(self.domain, self.domain_proj4, self.mf_grid_proj4)