def create_gens(train, test): gen, test_gen = None, None if train != None: gen = IQ_Generator(data_points=train, dim=input_dims, batch_size=bs, n_classes=1, shuffle=True, augment=True, distort=False, dist_scale=.05, flip=False, permute=False, gauss_noise=.001, rand_seg_remove=3) if test != None: test_gen = IQ_Generator(data_points=test, dim=input_dims, batch_size=1, n_classes=1, shuffle=False, augment=False) if gen != None and test_gen != None: return gen, test_gen elif gen != None: return gen elif test_gen != None: return test_gen
def create_test_gen(test): test_gen = IQ_Generator(data_points=test, dim=input_dims, batch_size=1, n_classes=1, shuffle=False, augment=False) return test_gen
def create_gens(train, test): gen = IQ_Generator(data_points = train, dim=input_dims, batch_size = bs, n_classes = 1, shuffle = True, augment = False, distort = False, dist_scale = .15, permute = False, gauss_noise = .01 ) test_gen = IQ_Generator(data_points = test, dim=input_dims, batch_size = bs, n_classes = 1, shuffle = False, augment = False) return gen, test_gen
def create_train_gen(train): gen = IQ_Generator(data_points=train, dim=input_dims, batch_size=bs, n_classes=1, shuffle=False, augment=False, distort=True, dist_scale=.05, gauss_noise=.001, rand_seg_remove=0) return gen