def getObjectives(self,m,n): obj = self.model(m,n).objectives dec = self.model(m,n).decisions ###$print "\nRunning GA" ###$print "x = ",self.x DifferentSeeds=random.randint(0,10000) pf,hv=ga(self.model,decisions=dec,objectives=obj,someSeed=DifferentSeeds,candidates=self.x[2],generations=1000,mutationRate=self.x[1],lives=self.x[0]) ###$print "completed GA" self.fx=[hv] return hv
from GeneticAlgorithm import GeneticAlgorithm as ga g1 = ga() g1.evolve(50) print(g1)
#print "start tuner..." TunedLives,TunedMutationRate,TunedCandidates = TuneGAparametersUsingDE(model,decisions=decisions,objectives=decisions) "Printing Tuned paramenters" #print "Tuned:[Lives,MutationRate,Candidates]=",TunedLives,TunedMutationRate,TunedCandidates i = 1 HV =[] PF =[] tunedHV=[] tunedPF=[] #print "Iteration...." for k in xrange(numOfIterations): print k, DifferentSeeds=random.randint(0,10000) paretoFront,HyperVolume=ga(model,decisions=decisions,objectives=objectives,someSeed=DifferentSeeds,candidates=100,generations=1000,mutationRate=0.05,lives=5) #print " START TUNED ONE...................." tunedPF,tunedHyperVolume=ga(model,decisions=decisions,objectives=objectives,someSeed=DifferentSeeds,candidates=TunedCandidates,generations=1000,mutationRate=TunedMutationRate,lives=TunedLives) HV.append(HyperVolume) PF.append(paretoFront) tunedHV.append(tunedHyperVolume) tunedPF.append(tunedPF) i += 1 #print k," ITERATIONs DONE...................." #Print data for this Decision/objective pair print "" print "----------------------------------------------------------------" print "Finished processing ",model.__name__," with Decisions = ",decisions," and Objectives = ",objectives fo.write('++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++\n')