Пример #1
0
    def __initializeTopology(self, P_arrays, ratio):
        """ Determine connectivities - mappings from surfaces to vertices and edges; from edges to groups
            Initialize order (k), # control points (m), and # points (n) for each edge 

        Input

        P_arrays: list of doubles(nu,nv,3)
            Each element of the list is an nu x nv array of x-y-z coordinates

        """

        self.nsurf = len(P_arrays)
        Ps = numpy.zeros((self.nsurf, 3, 3, 3), order='F')
        for k in range(self.nsurf):
            nu = P_arrays[k].shape[0]
            nv = P_arrays[k].shape[1]
            for i in range(2):
                for j in range(2):
                    Ps[k, -i, -j] = P_arrays[k][-i, -j]
            for i in range(2):
                Ps[k, -i,
                   1] += 0.5 * P_arrays[k][-i,
                                           int(numpy.ceil((nv - 1) / 2.0))]
                Ps[k, -i,
                   1] += 0.5 * P_arrays[k][-i,
                                           int(numpy.floor((nv - 1) / 2.0))]
            for j in range(2):
                Ps[k, 1,
                   -j] += 0.5 * P_arrays[k][int(numpy.ceil(
                       (nu - 1) / 2.0)), -j]
                Ps[k, 1,
                   -j] += 0.5 * P_arrays[k][int(numpy.floor(
                       (nu - 1) / 2.0)), -j]

        self.nvert, self.nedge, self.surf_vert, self.surf_edge = PUBSlib.initializeconnectivities(
            self.nsurf, 1e-13, 1e-5, Ps)
        self.vert_count, self.edge_count = PUBSlib.initializevecounts(
            self.nsurf, self.nvert, self.nedge, self.surf_vert, self.surf_edge)
        self.ngroup, self.edge_group = PUBSlib.initializegroups(
            self.nsurf, self.nedge, self.surf_edge)
        self.surf_c1 = numpy.zeros((self.nsurf, 3, 3), bool, order='F')
        self.edge_c1 = numpy.zeros((self.nedge, 2), bool, order='F')

        ns = numpy.zeros((self.nsurf, 2), order='F')
        for k in range(self.nsurf):
            ns[k, :] = P_arrays[k].shape[0:2]
        k = 4
        self.group_k, self.group_m, self.group_n = PUBSlib.initializekmn(
            k, self.nsurf, self.nedge, self.ngroup, ratio, ns, self.surf_edge,
            self.edge_group)

        if self.printInfo:
            print '# Surfaces =', self.nsurf
            print '# Vertices =', self.nvert
            print '# Edges =', self.nedge
            print '# Groups =', self.ngroup
Пример #2
0
    def computeTopology(self):
        nmem = self.nmem
        oml0 = self.geometry.oml0

        Ps = numpy.zeros((oml0.nsurf,3,3,3),order='F')
        for s in range(oml0.nsurf):
            for i in range(3):
                for j in range(3):
                    Ps[s,i,j] = oml0.evaluatePoint(s,i/2.0,j/2.0)[:3]
        nvertS,ngroupS,surf_vert,surf_group = PUBSlib.initializeconnectivities(oml0.nsurf,1e-13,1e-5,Ps)
        nvertM,ngroupM,mem_vert,mem_group = PSMlib.computemembertopology(nmem, self.membersInt, self.membersFlt)
        mem_group[:,:,:] += ngroupS

        self.surf_group = surf_group
        self.mem_group = mem_group
        self.ngroupS = ngroupS
        self.ngroupM = ngroupM
Пример #3
0
    def __initializeTopology(self, P_arrays, ratio):
        """ Determine connectivities - mappings from surfaces to vertices and edges; from edges to groups
            Initialize order (k), # control points (m), and # points (n) for each edge 

        Input

        P_arrays: list of doubles(nu,nv,3)
            Each element of the list is an nu x nv array of x-y-z coordinates

        """

        self.nsurf = len(P_arrays)
        Ps = numpy.zeros((self.nsurf,3,3,3),order='F')
        for k in range(self.nsurf):
            nu = P_arrays[k].shape[0]
            nv = P_arrays[k].shape[1]
            for i in range(2):
                for j in range(2):
                    Ps[k,-i,-j] = P_arrays[k][-i,-j]
            for i in range(2):
                Ps[k,-i,1] += 0.5*P_arrays[k][-i,int(numpy.ceil((nv-1)/2.0))]
                Ps[k,-i,1] += 0.5*P_arrays[k][-i,int(numpy.floor((nv-1)/2.0))]
            for j in range(2):
                Ps[k,1,-j] += 0.5*P_arrays[k][int(numpy.ceil((nu-1)/2.0)),-j]
                Ps[k,1,-j] += 0.5*P_arrays[k][int(numpy.floor((nu-1)/2.0)),-j]

        self.nvert,self.nedge,self.surf_vert,self.surf_edge = PUBSlib.initializeconnectivities(self.nsurf,1e-13,1e-5,Ps)
        self.vert_count,self.edge_count = PUBSlib.initializevecounts(self.nsurf,self.nvert,self.nedge,self.surf_vert,self.surf_edge)
        self.ngroup,self.edge_group = PUBSlib.initializegroups(self.nsurf,self.nedge,self.surf_edge)
        self.surf_c1 = numpy.zeros((self.nsurf,3,3),bool,order='F')
        self.edge_c1 = numpy.zeros((self.nedge,2),bool,order='F')

        ns = numpy.zeros((self.nsurf,2),order='F')
        for k in range(self.nsurf):
            ns[k,:] = P_arrays[k].shape[0:2]
        k = 4
        self.group_k, self.group_m, self.group_n = PUBSlib.initializekmn(k, self.nsurf, self.nedge, self.ngroup, ratio, ns, self.surf_edge, self.edge_group)

        if self.printInfo:
            print '# Surfaces =',self.nsurf
            print '# Vertices =',self.nvert
            print '# Edges =',self.nedge
            print '# Groups =',self.ngroup
Пример #4
0
    def computeTopology(self):
        nmem = self.nmem
        oml0 = self.geometry.oml0

        Ps = numpy.zeros((oml0.nsurf, 3, 3, 3), order='F')
        for s in range(oml0.nsurf):
            for i in range(3):
                for j in range(3):
                    Ps[s, i, j] = oml0.evaluatePoint(s, i / 2.0, j / 2.0)[:3]
        nvertS, ngroupS, surf_vert, surf_group = PUBSlib.initializeconnectivities(
            oml0.nsurf, 1e-13, 1e-5, Ps)
        nvertM, ngroupM, mem_vert, mem_group = PSMlib.computemembertopology(
            nmem, self.membersInt, self.membersFlt)
        mem_group[:, :, :] += ngroupS

        self.surf_group = surf_group
        self.mem_group = mem_group
        self.ngroupS = ngroupS
        self.ngroupM = ngroupM
Пример #5
0
    def meshStructure(self, members, lengths):
        oml0 = self.oml0

        nmem = len(members)
        faces = -numpy.ones((nmem,4,2),int,order='F')
        coords = numpy.zeros((nmem,4,2,2,3),order='F')
        for imem in range(nmem):
            key = members.keys()[imem]
            for icontr in range(len(members[key])):
                faces[imem,icontr,0] = self.inds[members[key][icontr][0]]
                faces[imem,icontr,1] = members[key][icontr][1]
                coords[imem,icontr,0,0,:] = members[key][icontr][2]
                coords[imem,icontr,1,0,:] = members[key][icontr][3]
                coords[imem,icontr,0,1,:] = members[key][icontr][4]
                coords[imem,icontr,1,1,:] = members[key][icontr][5]

        surfs = numpy.linspace(0,oml0.nsurf-1,oml0.nsurf)
        s = numpy.zeros(4*oml0.nsurf)
        s[0::4] = surfs
        s[1::4] = surfs
        s[2::4] = surfs
        s[3::4] = surfs
        u = numpy.zeros(4*oml0.nsurf)
        u[1::4] = 1.
        u[3::4] = 1.
        v = numpy.zeros(4*oml0.nsurf)
        v[2::4] = 1.
        v[3::4] = 1.
        quadsS = numpy.zeros((oml0.nsurf,4),order='F')
        quadsS[:,0] = 4*surfs + 0
        quadsS[:,1] = 4*surfs + 1
        quadsS[:,2] = 4*surfs + 3
        quadsS[:,3] = 4*surfs + 2
        B = oml0.evaluateBases(s,u,v)
        nodesS = B.dot(oml0.C[:,:3])
        oml0.export.write2TecQuads('john.dat',nodesS,quadsS)

        #oml0.C[:,:] = -1.0
        #for k in range(len(self.comps)):
        #    c = self.keys[k]
        #    comp = self.comps[c]
        #    for f in range(len(comp.Ks)):
        #        ni, nj = comp.Ks[f].shape
        #        for i in range(ni):
        #            for j in range(nj):
        #                surf = comp.Ks[f][i,j]
        #                mu, mv = oml0.edgeProperty(surf,1)
        #                ugroup = oml0.edge_group[abs(oml0.surf_edge[surf,0,0])-1]
        #                vgroup = oml0.edge_group[abs(oml0.surf_edge[surf,1,0])-1]
        #                mu = oml0.group_m[ugroup-1]
        #                mv = oml0.group_m[vgroup-1]
        #                for u in range(mu):
        #                    for v in range(mv):
        #                        oml0.C[oml0.getIndex(surf,u,v,1),:3] = [u/(mu-1), v/(mv-1), 0]

        oml0.C[:,:] = -1.0
        for surf in range(oml0.nsurf):
            mu, mv = oml0.edgeProperty(surf,1)
            ugroup = oml0.edge_group[abs(oml0.surf_edge[surf,0,0])-1]
            vgroup = oml0.edge_group[abs(oml0.surf_edge[surf,1,0])-1]
            mu = oml0.group_m[ugroup-1]
            mv = oml0.group_m[vgroup-1]
            for u in range(mu):
                for v in range(mv):
                    oml0.C[oml0.getIndex(surf,u,v,1),:3] = [u/(mu-1), v/(mv-1), 0]
                    print u/(mu-1), v/(mv-1)

        oml0.computePointsC()
        #oml0.export.write2TecQuads('john2.dat',nodesM,quadsM)
        oml0.write2Tec('test2')
        oml0.write2TecC('test2')

        self.computePoints()
        print oml0.C[oml0.getIndex(147,-1, 0,1),:3]
        print oml0.C[oml0.getIndex(144,-1,-1,1),:3]
        print oml0.C[oml0.getIndex( 49, 0, 0,1),:3]


        s = numpy.zeros(4*nmem)
        P = numpy.zeros((4*nmem,3),order='F')
        Q = numpy.zeros((4*nmem,3),order='F')
        w = numpy.zeros((4*nmem,4),order='F')
        mems = numpy.linspace(0,nmem-1,nmem)
        Q[:,2] = 1.
        Bs = []
        ws = []
        for icontr in range(4):
            for imem in range(nmem):
                k = faces[imem,icontr,0]
                f = faces[imem,icontr,1]
                c = self.keys[k]
                comp = self.comps[c]
                ni, nj = comp.Ks[f].shape
                for i in range(2):
                    for j in range(2):
                        u, v = coords[imem,icontr,i,j,:2]
                        ii = int(numpy.floor(u*ni))
                        jj = int(numpy.floor(v*nj))
                        s[4*imem+2*j+i] = comp.Ks[f][ii,jj]
                        P[4*imem+2*j+i,0] = u*ni - ii
                        P[4*imem+2*j+i,1] = v*nj - jj
                        w[4*imem+2*j+i,icontr] = coords[imem,icontr,i,j,2]
            surf,u,v = oml0.evaluateProjection(P, Q=Q)
            Bs.append(oml0.evaluateBases(surf, u, v))


        quadsM = numpy.zeros((nmem,4),order='F')
        quadsM[:,0] = 4*mems + 0
        quadsM[:,1] = 4*mems + 1
        quadsM[:,2] = 4*mems + 3
        quadsM[:,3] = 4*mems + 2
        nodesM = numpy.zeros((4*nmem,3),order='F')
        for icontr in range(4):
            for k in range(3):
                nodesM[:,k] += w[:,icontr] * Bs[icontr].dot(oml0.C[:,k])
            
        oml0.export.write2TecQuads('john2.dat',nodesM,quadsM)

        exit()



        Ps = numpy.zeros((oml0.nsurf,3,3,3),order='F')
        for s in range(oml0.nsurf):
            for i in range(3):
                for j in range(3):
                    Ps[s,i,j] = oml0.evaluatePoint(s,i/2.0,j/2.0)[:3]
        nvertS,ngroupS,surf_vert,surf_group = PUBSlib.initializeconnectivities(oml0.nsurf,1e-13,1e-5,Ps)

        nvertM,ngroupM,mem_vert,mem_group = PSMlib.computemembertopology(nmem, faces, coords)
        mem_group[:,:,:] += ngroupS
        ngroup = ngroupS + ngroupM

        nint = PSMlib.countfaceintersections(nmem, coords)
        intFaces, intCoords = PSMlib.computefaceintersections(nmem, nint, faces, coords)

        groupIntCount = numpy.zeros(ngroup,int)
        meshesS = []
        for k in range(len(self.comps)):
            c = self.keys[k]
            comp = self.comps[c]
            meshes = []
            for f in range(len(comp.Ks)):
                ni, nj = comp.Ks[f].shape
                nedge = PSMlib.countfaceedges(k, f, ni, nj, nint, intFaces)
                edges, edge_group = PSMlib.computefaceedges(k, f, ni, nj, oml0.nsurf, nint, nmem, nedge, comp.Ks[f], surf_group, mem_group, intFaces, intCoords)
                mesh = QuadMesh(0.2,edges)
                mesh.computeIntersections()
                mesh.computeDivisions()
                mesh.deleteDuplicateVerts()
                groupIntCount = PSMlib.countgroupintersections(mesh.verts.shape[0], mesh.edges.shape[0], ngroup, mesh.verts, mesh.edges, edge_group, groupIntCount)
                meshes.append([mesh,edge_group])
            meshesS.append(meshes)

        meshesM = []
        for imem in range(nmem):
            edges, edge_group = PSMlib.computememberedges(imem+1, nmem, mem_group)
            mesh = QuadMesh(1e6,edges)
            meshesM.append([mesh,edge_group])

        groupIntPtr = PSMlib.computegroupintptr(ngroup, groupIntCount)
        nint = groupIntPtr[-1,-1]
        groupInts = numpy.zeros(nint)
        for k in range(len(self.comps)):
            c = self.keys[k]
            comp = self.comps[c]
            for f in range(len(comp.Ks)):
                mesh, edge_group = meshesS[k][f]
                groupInts = PSMlib.computegroupintersections(mesh.verts.shape[0], mesh.edges.shape[0], ngroup, nint, mesh.verts, mesh.edges, edge_group, groupIntPtr, groupInts)
                #print groupInts

        for k in range(len(self.comps)):
            c = self.keys[k]
            comp = self.comps[c]
            for f in range(len(comp.Ks)):
                mesh, edge_group = meshesS[k][f]
                nvert = PSMlib.countintersectionverts(mesh.edges.shape[0], ngroup, edge_group, groupIntPtr)
                mesh.verts = PSMlib.computeintersectionverts(mesh.verts.shape[0], mesh.edges.shape[0], ngroup, nint, nvert + mesh.verts.shape[0], mesh.verts, mesh.edges, edge_group, groupIntPtr, groupInts)
                print 'QM1', k, f
                mesh.mesh()
                #edges[:,:,0] *= lengths[k,0]
                #edges[:,:,1] *= lengths[k,1]
                if k==1 and f==0 and 0:
                    import pylab
                    mesh.plot(111,pt=False,pq=False)
                    pylab.show()
                    exit()

        for imem in range(nmem):
            mesh, edge_group = meshesM[imem]
            nvert = PSMlib.countintersectionverts(mesh.edges.shape[0], ngroup, edge_group, groupIntPtr)
            mesh.verts = PSMlib.computeintersectionverts(mesh.verts.shape[0], mesh.edges.shape[0], ngroup, nint, nvert + mesh.verts.shape[0], mesh.verts, mesh.edges, edge_group, groupIntPtr, groupInts)
            print 'QM2', imem
            mesh.mesh()
            if 0:
                import pylab
                mesh.plot(111,pt=False,pq=False)
                pylab.show()
                exit()
            meshesM.append([mesh,edge_group])

        oml0.C[:,:] = -1.0
        for k in range(len(self.comps)):
            c = self.keys[k]
            comp = self.comps[c]
            for f in range(len(comp.Ks)):
                ni, nj = comp.Ks[f].shape
                for i in range(ni):
                    for j in range(nj):
                        surf = comp.Ks[f][i,j]
                        mu, mv = oml0.edgeProperty(surf,1)
                        for u in range(mu):
                            uu = u/(mu-1)
                            for v in range(mv):
                                vv = v/(mv-1)
                                oml0.C[oml0.getIndex(surf,u,v,1),:3] = [(uu+i)/ni, (vv+j)/nj, 0]
        oml0.computePointsC()
        #oml0.write2Tec('test2')
        #oml0.write2TecC('test2')
        #exit()

        Bs = []
        quads = []
        nquad0 = 0
        for k in range(len(self.comps)):
            c = self.keys[k]
            comp = self.comps[c]
            for f in range(len(comp.Ks)):
                mesh, edge_group = meshesS[k][f]
                ni, nj = comp.Ks[f].shape
                print mesh.verts.shape[0]
                P0, surfs, Q = PSMlib.computeprojtninputs(mesh.verts.shape[0], ni, nj, mesh.verts, comp.Ks[f])
                surf,u,v = oml0.evaluateProjection(P0, comp.Ks[f].flatten(), Q)
                Bs.append(oml0.evaluateBases(surf,u,v))
                quads.append(nquad0 + mesh.quads - 1)
                #quads.append(mesh.quads - 1)
                nquad0 += mesh.verts.shape[0]

        self.computePoints()

        #i = 0
        #for k in range(len(self.comps)):
        #    c = self.keys[k]
        #    comp = self.comps[c]
        #    for f in range(len(comp.Ks)):
        #        P = Bs[i].dot(oml0.C[:,:3])
        #        oml0.export.write2TecQuads('data'+str(k)+'-'+str(f)+'.dat',P,quads[i]-1)
        #        i += 1

        import scipy.sparse
        B = scipy.sparse.vstack(Bs)
        P = B.dot(oml0.C[:,:3])
        quads = numpy.vstack(quads)
        oml0.export.write2TecQuads('john.dat',P,quads)#mesh.quads-1)