Пример #1
0
 def delete_files(self):
     '''
     This function deletes all waveform data .csv 
     when convert_all is run
     NO INPUTS OR OUTPUTS
     '''
     folder = Globals.getCsvDir()
     for the_file in os.listdir(folder):
         file_path = os.path.join(folder, the_file)
         try:
             if os.path.isfile(file_path):
                 os.unlink(file_path)
         except Exception, e:
             print e
             raise
Пример #2
0
 def delete_files(self):
     '''
     This function deletes all waveform data .csv 
     when convert_all is run
     NO INPUTS OR OUTPUTS
     '''
     folder = Globals.getCsvDir()
     for the_file in os.listdir(folder):
         file_path = os.path.join(folder, the_file)
         try:
             if os.path.isfile(file_path):
                 os.unlink(file_path)
         except Exception, e:
             print e
             raise    
Пример #3
0
 def write_data_to_csv(self, song_data, song_name, genre, column_labels):
     '''
     This function writes the song's feature row data
     into a csv file for modeling
     INPUT: song_data = 1d numpy array of floats containing
     song feature data; song_name (string); genre (string);
     column_labels = 1d numpy array of strings, song feature labels
     OUTPUT: NONE
     '''
     csv_dir = Globals.getCsvDir()
     song_data = song_data.tolist()
     song_data.append(song_name)
     song_data.append(genre)
     column_names = [str(lab) for lab in column_labels]
     column_names.append("Song Name")
     column_names.append("Label")
     with open(csv_dir + "\\" + song_name + '.csv', 'wb') as csvfile:
         writer = csv.writer(csvfile, delimiter=',')
         writer.writerow(column_names)
         writer.writerow(song_data)
Пример #4
0
 def write_data_to_csv(self, song_data, song_name, genre, column_labels):
     '''
     This function writes the song's feature row data
     into a csv file for modeling
     INPUT: song_data = 1d numpy array of floats containing
     song feature data; song_name (string); genre (string);
     column_labels = 1d numpy array of strings, song feature labels
     OUTPUT: NONE
     ''' 
     csv_dir = Globals.getCsvDir()
     song_data = song_data.tolist()
     song_data.append(song_name)
     song_data.append(genre)
     column_names = [str(lab) for lab in column_labels]
     column_names.append("Song Name")
     column_names.append("Label")
     with open(csv_dir + "\\" + song_name + '.csv', 'wb') as csvfile:
         writer = csv.writer(csvfile, delimiter=',')
         writer.writerow(column_names)
         writer.writerow(song_data)
Пример #5
0
 def df_stitcher(self):
     dir = Globals.getCsvDir()
     '''
     This loads all of the outputted csv data from 
     convert_all into the pandas data frame for analysis.
     It returns just the pandas data frame
     INPUT: none
     OUTPUT: pandas data frame containing feature data
     '''
     '''
     this could also go into the Modeler file/class
     '''
     file_list = [f for f in listdir(dir) if isfile(join(dir, f))]
     df = pd.DataFrame()
     for file_name in file_list:
         try:
             df_dum = pd.read_csv(dir + "\\" + file_name)
         except:
             continue
         df = df.append(df_dum, ignore_index=True)
     df = df.dropna()
     return df
Пример #6
0
 def df_stitcher(self):
     dir = Globals.getCsvDir()
     '''
     This loads all of the outputted csv data from 
     convert_all into the pandas data frame for analysis.
     It returns just the pandas data frame
     INPUT: none
     OUTPUT: pandas data frame containing feature data
     '''
     '''
     this could also go into the Modeler file/class
     '''
     file_list = [f for f in listdir(dir) if isfile(join(dir, f))]
     df = pd.DataFrame()
     for file_name in file_list:
         try:
             df_dum = pd.read_csv(dir + "\\" + file_name)
         except:
             continue
         df = df.append(df_dum, ignore_index=True)
     df = df.dropna()
     return df