Пример #1
0
 def set_status(self, structure):
     self._grid = 0
     self._all_done = False
     self._workdir = None
     self._converged = is_converged(False, structure)
     try:
         self._grid = read_grid_from_file(s_name(structure) +
                                          ".full_res")['grid']
         self._all_done = read_grid_from_file(
             s_name(structure) + ".full_res")['all_done']
         self._workdir = os.path.join(s_name(structure),
                                      'work_' + str(self.grid))
     except (IOError, OSError):
         pass
Пример #2
0
    def test_read_grid_from_file(self):
        """
        Testing the reading the results of a full set of calculations from file
        """
        # no full res file case
        full_res_read = read_grid_from_file('full_res')
        self.assertEqual(full_res_read, {'grid': 0, 'all_done': False})

        # file there done case
        full_res = {'grid': 2, 'all_done': True}
        with open('full_res', 'w') as f:
            json.dump(obj=full_res, fp=f)
        full_res_read = read_grid_from_file('full_res')
        self.assertEqual(full_res_read, full_res)
Пример #3
0
 def store_results(self, name):
     folder = name + '.res'
     store_conv_results(name, folder)
     w = 'w' + str(read_grid_from_file(name + ".full_res")['grid'])
     try:
         if os.path.isdir(os.path.join(name + ".conv", w, "t11",
                                       "outdata")):
             shutil.copyfile(
                 os.path.join(name + ".conv", w, "t2", "outdata",
                              "out_GSR.nc"),
                 os.path.join(folder, "out_GSR.nc"))
             shutil.copyfile(
                 os.path.join(name + ".conv", w, "t11", "outdata",
                              "out_SIGRES.nc"),
                 os.path.join(folder, "out_SIGRES.nc"))
         else:
             shutil.copyfile(
                 os.path.join(name + ".conv", w, "t9", "outdata",
                              "out_SIGRES.nc"),
                 os.path.join(folder, "out_SIGRES.nc"))
     except (OSError, IOError):  # compatibility issue
         shutil.copyfile(
             os.path.join(name + ".conv", "work_0", "task_6", "outdata",
                          "out_SIGRES.nc"),
             os.path.join(folder, "out_SIGRES.nc"))
Пример #4
0
    def test_SiC_conv(self):
        """
        Testing a full convergence calculation cycle on SiC using precomupted data.
        """

        # the current version uses refence data from a run using the production version on zenobe
        # once all checks out the run should be done using the input generated using this version to replace the
        # reference

        wdir = tempfile.mkdtemp()
        os.chdir(wdir)

        temp_ABINIT_PS_EXT = os.environ.get('ABINIT_PS_EXT', None)
        temp_ABINIT_PS = os.environ.get('ABINIT_PS', None)

        os.environ['ABINIT_PS_EXT'] = '.psp8'
        os.environ['ABINIT_PS'] = wdir

        reference_dir = os.path.join(__reference_dir__, 'SiC_test_case')
        if not os.path.isdir(reference_dir): raise RuntimeError('py.test needs to be started in the HTGW root, '
                                                                '%s does not exist' % __reference_dir__)

        # copy input
        print(wdir)
        self.assertTrue(os.path.isdir(reference_dir))
        src_files = os.listdir(reference_dir)
        for file_name in src_files:
            full_file_name = os.path.join(reference_dir, file_name)
            if os.path.isfile(full_file_name):
                shutil.copy(full_file_name, wdir)
        self.assertEqual(len(os.listdir(wdir)), 6)

        print(os.listdir(wdir))
        structure = Structure.from_file('SiC.cif')
        structure.item = 'SiC.cif'

        print(' ==== generate flow ===  ')
        gwsetup(update=False)
        self.assertTrue(os.path.isdir(os.path.join(wdir, 'SiC_SiC.cif')))
        print(os.listdir(os.path.join(wdir)))
        print(os.listdir(os.path.join(wdir, 'SiC_SiC.cif')))
        self.assertTrue(os.path.isfile(os.path.join(wdir, 'SiC_SiC.cif', '__AbinitFlow__.pickle')))
        self.assertEqual(len(os.listdir(os.path.join(wdir, 'SiC_SiC.cif', 'w0'))), 48)

        print(' ==== copy reference results from first calculation ===  ')
        shutil.rmtree(os.path.join(wdir, 'SiC_SiC.cif'))
        shutil.copytree(os.path.join(reference_dir, 'ref_res', 'SiC_SiC.cif'), os.path.join(wdir, 'SiC_SiC.cif'))
        self.assertTrue(os.path.isdir(os.path.join(wdir, 'SiC_SiC.cif')))
        self.assertEqual(len(os.listdir(os.path.join(wdir, 'SiC_SiC.cif', 'w0'))), 68)

        print(' ==== process output ===  ')
        gwoutput()
        print(os.listdir('.'))
        self.assertTrue(os.path.isfile('plot-fits'))
        self.assertTrue(os.path.isfile('plots'))
        self.assertEqual(is_converged(hartree_parameters=True, structure=structure, return_values=True),
                         {u'ecut': 44.0, u'ecuteps': 4.0, u'gap': 6.816130591466406, u'nbands': 60})
        self.assertTrue(os.path.isfile('SiC_SiC.cif.full_res'))

        print(' ==== generate next flow ===  ')
        print('      version with bandstructure and dos  ')
        gwsetup(update=False)
        self.assertTrue(os.path.isdir('SiC_SiC.cif.conv'))
        print(os.listdir(os.path.join(wdir, 'SiC_SiC.cif.conv', 'w0')))
        self.assertEqual(len(os.listdir(os.path.join(wdir, 'SiC_SiC.cif.conv', 'w0'))), 15)

        print(' ==== copy reference from second flow ===  ')
        time.sleep(1)  # the .conv directory should be older than the first one
        shutil.rmtree(os.path.join(wdir, 'SiC_SiC.cif.conv'))
        shutil.copytree(os.path.join(reference_dir, 'ref_res', 'SiC_SiC.cif.conv'),
                        os.path.join(wdir, 'SiC_SiC.cif.conv'))
        self.assertTrue(os.path.isdir(os.path.join(wdir, 'SiC_SiC.cif.conv')))
        self.assertEqual(len(os.listdir(os.path.join(wdir, 'SiC_SiC.cif.conv', 'w0'))), 13)

        print(' ==== process output ===  ')
        backup = sys.stdout
        sys.stdout = StringIO()  # capture output
        gwoutput()
        out = sys.stdout.getvalue()  # release output
        sys.stdout.close()  # close the stream
        sys.stdout = backup  # restore original stdout

        print('=== *** ====\n'+out+'=== *** ====\n')
        gap = 0
        for l in out.split('\n'):
            if 'values' in l:
                gap = float(l.split(' ')[6])
        self.assertEqual(gap, 7.114950664158926)

        print(os.listdir('.'))
        print('processed')
        self.assertTrue(os.path.isfile('SiC_SiC.cif.full_res'))
        full_res = read_grid_from_file(s_name(structure)+'.full_res')
        self.assertEqual(full_res, {u'all_done': True, u'grid': 0})
        self.assertTrue(os.path.isdir(os.path.join(wdir, 'SiC_SiC.cif.res')))
        self.assertEqual(len(os.listdir(os.path.join(wdir, 'SiC_SiC.cif.res'))), 5)
        print(os.listdir(os.path.join(wdir, 'SiC_SiC.cif.res')))

        msrf = MySigResFile(os.path.join(wdir, 'SiC_SiC.cif.res', 'out_SIGRES.nc'))
        self.assertEqual(msrf.h**o, 6.6843830378711786)
        self.assertEqual(msrf.lumo, 8.0650328308487982)
        self.assertEqual(msrf.homo_gw, 6.2325949743130034)
        self.assertEqual(msrf.lumo_gw, 8.2504215095164763)
        self.assertEqual(msrf.fundamental_gap('ks'), msrf.lumo - msrf.h**o)
        self.assertEqual(msrf.fundamental_gap('gw'), msrf.lumo_gw - msrf.homo_gw)
        self.assertAlmostEqual(msrf.fundamental_gap('gamma'), gap, places=3)

        # since we now have a mysigresfile object we test the functionality

        msrf.get_scissor()
        # return self.qplist_spin[0].build_scissors(domains=[[-200, mid], [mid, 200]], k=1, plot=False)

        res = msrf.get_scissor_residues()
        self.assertEqual(res, [0.05322754684319431, 0.34320373172956475])
        # return sc.residues

        #msrf.plot_scissor(title='')

        #msrf.plot_qpe(title='')

        # to be continued

        if temp_ABINIT_PS is not None:
            os.environ['ABINIT_PS_EXT'] = temp_ABINIT_PS_EXT
            os.environ['ABINIT_PS'] = temp_ABINIT_PS
Пример #5
0
    def create(self):
        """
        create single abinit G0W0 flow
        """
        # manager = 'slurm' if 'ceci' in self.spec['mode'] else 'shell'
        # an AbiStructure object has an overwritten version of get_sorted_structure that sorts according to Z
        # this could also be pulled into the constructor of Abistructure
        # abi_structure = self.structure.get_sorted_structure()
        from abipy import abilab
        item = copy.copy(self.structure.item)
        self.structure.__class__ = abilab.Structure
        self.structure = self.structure.get_sorted_structure_z()
        self.structure.item = item
        abi_structure = self.structure
        manager = TaskManager.from_user_config()
        # Initialize the flow.
        flow = Flow(self.work_dir, manager, pickle_protocol=0)
        # kpoint grid defined over density 40 > ~ 3 3 3
        if self.spec['converge'] and not self.all_converged:
            # (2x2x2) gamma centered mesh for the convergence test on nbands and ecuteps
            # if kp_in is present in the specs a kp_in X kp_in x kp_in mesh is used for the convergence study
            print('== here ===')
            print(self.spec.__class__)
            json.dumps(self.spec.data, indent=2)
            if 'kp_in' in self.spec.data.keys():
                if self.spec['kp_in'] > 9:
                    print(
                        'WARNING:\nkp_in should be < 13 to generate an n x n x n mesh\nfor larger values a grid with '
                        'density kp_in will be generated')
                kppa = self.spec['kp_in']
            else:
                kppa = 2
        else:
            # use the specified density for the final calculation with the converged nbands and ecuteps of other
            # stand alone calculations
            kppa = self.spec['kp_grid_dens']
        gamma = True

        # 'standard' parameters for stand alone calculation
        scf_nband = self.get_bands(self.structure) + 20
        # additional bands to accommodate for nbdbuf and a bit extra
        nscf_nband = [10 * self.get_bands(self.structure)]

        nksmall = None
        ecuteps = [8]

        extra_abivars = dict()

        # read user defined extra abivars from file  'extra_abivars' should be dictionary
        extra_abivars.update(read_extra_abivars())
        # self.bands_fac = 0.5 if 'gwcomp' in extra_abivars.keys() else 1
        # self.convs['nscf_nbands']['test_range'] =
        # tuple([self.bands_fac*x for x in self.convs['nscf_nbands']['test_range']])

        ecut = extra_abivars.pop('ecut', 44)
        ecutsigx = extra_abivars.pop('ecutsigx', 44)

        # if npfft is too large or if npfft changes between the nscf calcualtion and the screening / sigma calulations
        # strange things can happen
        if 'npfft' not in extra_abivars:
            extra_abivars['npfft'] = 3

        if ecutsigx > ecut:
            raise RuntimeError('ecutsigx can not be larger than ecut')
        if ecutsigx < max(ecuteps):
            raise RuntimeError('ecutsigx < ecuteps this is not realistic')

        response_models = ['godby']
        if 'ppmodel' in extra_abivars.keys():
            response_models = [extra_abivars.pop('ppmodel')]

        if self.option is not None:
            for k in self.option.keys():
                if k == 'ecut':
                    ecut = self.option[k]
                if k in ['ecuteps', 'nscf_nbands']:
                    pass
                else:
                    extra_abivars.update({k: self.option[k]})

        try:
            grid = read_grid_from_file(s_name(self.structure) +
                                       ".full_res")['grid']
            all_done = read_grid_from_file(
                s_name(self.structure) + ".full_res")['all_done']
            workdir = os.path.join(s_name(self.structure), 'w' + str(grid))
        except (IOError, OSError):
            grid = 0
            all_done = False
            workdir = None

        if not all_done:
            if (self.spec['test']
                    or self.spec['converge']) and not self.all_converged:
                if self.spec['test']:
                    print('| setting test calculation')
                    tests = SingleAbinitGWWork(self.structure, self.spec).tests
                    response_models = []
                else:
                    if grid == 0:
                        print('| setting convergence calculations for grid 0')
                        # tests = SingleAbinitGWWorkFlow(self.structure, self.spec).convs
                        tests = self.convs
                    else:
                        print('| extending grid')
                        # tests = expand(SingleAbinitGWWorkFlow(self.structure, self.spec).convs, grid)
                        tests = expand(self.convs, grid)
                ecuteps = []
                nscf_nband = []
                for test in tests:
                    if tests[test]['level'] == 'scf':
                        if self.option is None:
                            extra_abivars.update(
                                {test + '_s': tests[test]['test_range']})
                        elif test in self.option:
                            extra_abivars.update({test: self.option[test]})
                        else:
                            extra_abivars.update(
                                {test + '_s': tests[test]['test_range']})
                    else:
                        for value in tests[test]['test_range']:
                            if test == 'nscf_nbands':
                                nscf_nband.append(
                                    value * self.get_bands(self.structure))
                                # scr_nband takes nscf_nbands if not specified
                                # sigma_nband takes scr_nbands if not specified
                            if test == 'ecuteps':
                                ecuteps.append(value)
                            if test == 'response_model':
                                response_models.append(value)
            elif self.all_converged:
                print(
                    '| setting up for testing the converged values at the high kp grid '
                )
                # add a bandstructure and dos calculation
                if os.path.isfile('bands'):
                    nksmall = -30
                    # negative value > only bandstructure
                else:
                    nksmall = 30
                # in this case a convergence study has already been performed.
                # The resulting parameters are passed as option
                ecuteps = [
                    self.option['ecuteps'], self.option['ecuteps'] +
                    self.convs['ecuteps']['test_range'][1] -
                    self.convs['ecuteps']['test_range'][0]
                ]
                nscf_nband = [
                    self.option['nscf_nbands'], self.option['nscf_nbands'] +
                    self.convs['nscf_nbands']['test_range'][1] -
                    self.convs['nscf_nbands']['test_range'][0]
                ]
                # for option in self.option:
                #    if option not in ['ecuteps', 'nscf_nband']:
                #        extra_abivars.update({option + '_s': self.option[option]})
        else:
            print('| all is done for this material')
            return

        logger.info('ecuteps : %s ' % str(ecuteps))
        logger.info('extra   : %s ' % str(extra_abivars))
        logger.info('nscf_nb : %s ' % str(nscf_nband))
        inputs = g0w0_convergence_inputs(abi_structure,
                                         self.pseudo_table,
                                         kppa,
                                         nscf_nband,
                                         ecuteps,
                                         ecutsigx,
                                         scf_nband,
                                         ecut,
                                         accuracy="normal",
                                         spin_mode="unpolarized",
                                         smearing=None,
                                         response_models=response_models,
                                         charge=0.0,
                                         gw_qprange=2,
                                         gamma=gamma,
                                         nksmall=nksmall,
                                         extra_abivars=extra_abivars)

        work = G0W0Work(scf_inputs=inputs[0],
                        nscf_inputs=inputs[1],
                        scr_inputs=inputs[2],
                        sigma_inputs=inputs[3])

        # work = g0w0_extended_work(abi_structure, self.pseudo_table, kppa, nscf_nband, ecuteps, ecutsigx, scf_nband,
        # accuracy="normal", spin_mode="unpolarized", smearing=None, response_models=response_models,
        # charge=0.0, sigma_nband=None, scr_nband=None, gamma=gamma, nksmall=nksmall, **extra_abivars)

        print(workdir)
        flow.register_work(work, workdir=workdir)
        return flow.allocate()
Пример #6
0
    def execute_flow(self, structure, spec_data):
        """
        execute spec prepare input/jobfiles or submit to fw for a given structure
        for vasp the different jobs are created into a flow
        todo this should actually create and execute a VaspGWWorkFlow(GWWorkflow)
        """
        # general part for the base class
        grid = 0
        all_done = False
        converged = is_converged(False, structure)
        try:
            grid = read_grid_from_file(s_name(structure) + ".full_res")['grid']
            all_done = read_grid_from_file(s_name(structure) +
                                           ".full_res")['all_done']
        except (IOError, OSError):
            pass

        if all_done:
            print('| all is done for this material')
            return

        # specific part

        if spec_data['mode'] == 'fw':
            fw_work_flow = VaspGWFWWorkFlow()
        else:
            fw_work_flow = []
        if spec_data['test'] or spec_data['converge']:
            if spec_data['test']:
                tests_prep = GWscDFTPrepVaspInputSet(structure,
                                                     spec_data).tests
                tests_prep.update(
                    GWDFTDiagVaspInputSet(structure, spec_data).tests)
            elif spec_data['converge'] and converged:
                tests_prep = self.get_conv_res_test(spec_data,
                                                    structure)['tests_prep']
            else:
                tests_prep = GWscDFTPrepVaspInputSet(structure,
                                                     spec_data).convs
                tests_prep.update(
                    GWDFTDiagVaspInputSet(structure, spec_data).convs)
                if grid > 0:
                    tests_prep = expand(tests=tests_prep, level=grid)
                print(tests_prep)
            for test_prep in tests_prep:
                print('setting up test for: ' + test_prep)
                for value_prep in tests_prep[test_prep]['test_range']:
                    print("**" + str(value_prep) + "**")
                    option = {'test_prep': test_prep, 'value_prep': value_prep}
                    self.create_job(spec_data, structure, 'prep', fw_work_flow,
                                    converged, option)
                    for job in spec_data['jobs'][1:]:
                        if job == 'G0W0':
                            if spec_data['test']:
                                tests = GWG0W0VaspInputSet(
                                    structure, spec_data).tests
                            elif spec_data['converge'] and converged:
                                tests = self.get_conv_res_test(
                                    spec_data, structure)['tests']
                            else:
                                tests = GWG0W0VaspInputSet(
                                    structure, spec_data).convs
                                if grid > 0:
                                    tests = expand(tests=tests, level=grid)
                                print(tests)
                        if job in ['GW0', 'scGW0']:
                            input_set = GWG0W0VaspInputSet(
                                structure, spec_data)
                            input_set.gw0_on()
                            if spec_data['test']:
                                tests = input_set.tests
                            else:
                                tests = input_set.tests
                        for test in tests:
                            print('    setting up test for: ' + test)
                            for value in tests[test]['test_range']:
                                print("    **" + str(value) + "**")
                                option.update({'test': test, 'value': value})
                                self.create_job(spec_data, structure, job,
                                                fw_work_flow, converged,
                                                option)