Пример #1
0
import HW2.graph as tfg
import HW2.session as tfs

apple_price = 100
apple_num = 2
tax = 1.1

g = tfg.Graph()

# Create variables
a = tfg.Variable(apple_price, name="a")
b = tfg.Variable(apple_num, name="b")
c = tfg.Variable(tax, name="c")

# Create Mul operation node
d = tfg.Mul(a, b, name="d")

# Create Mul operation node
e = tfg.Mul(d, c, name="e")

session = tfs.Session()
# forward
total_apple_price = session.run(d, verbose=False)
print("total_apple_price: {:f}".format(float(total_apple_price)))
final_price = session.run(e, verbose=False)
print("final_price: {:f}".format(float(final_price)))

print()

#backward
d_in = 1
Пример #2
0
 def initialize_param(self):
     self.param = tfg.Variable(np.random.random(size=self.shape), name=self.name)
Пример #3
0
 def initialize_param(self):
     self.param = tfg.Variable(tff.get_truncated_normal(shape=self.shape,
                                                        mean=self.mean,
                                                        sd=self.sd,
                                                        low=self.low,
                                                        upp=self.upp), name=self.name)
Пример #4
0
 def initialize_param(self):
     self.param = tfg.Variable(np.ones(shape=self.shape) * 0.1, name=self.name)
Пример #5
0
 def initialize_param(self):
     self.param = tfg.Variable(np.random.normal(loc=self.mean, scale=self.sd, size=self.shape), name=self.name)
Пример #6
0
 def initialize_param(self):
     self.param = tfg.Variable(np.random.randn(self.shape[0], self.shape[1]), name=self.name)
Пример #7
0
 def initialize_param(self):
     self.param = tfg.Variable(np.zeros(shape=self.shape), name=self.name)
Пример #8
0
 def initialize_param(self):
     self.param = tfg.Variable(self.value, name=self.name)
Пример #9
0
# Reference: http://www.deepideas.net/deep-learning-from-scratch-i-computational-graphs/
import networkx as nx
import matplotlib.pyplot as plt
import HW2.graph as tfg
import HW2.session as tfs
import HW2.functions as tff


# Create a new graph
g = tfg.Graph()
g.initialize()

# Create variables
a = tfg.Variable(5.0, name="A")
b = tfg.Variable(1.0, name="b")

# Create placeholder
x = tfg.Placeholder(name="x")

# Create hidden node y
y = tfg.Mul(a, x, name="y")

# Create output node z
z = tfg.Add(y, b, name="z")

# nx.draw_networkx(g, with_labels=True)
# plt.show(block=True)

session = tfs.Session()
output = session.run(z, feed_dict={x: 1.0})
print(output)
Пример #10
0
import HW2.graph as tfg
import HW2.session as tfs

apple_price = 100
apple_num = 2

orange_price = 150
orange_num = 3

tax = 1.1

g = tfg.Graph()

# Create variables
a = tfg.Variable(apple_price, name="a")
b = tfg.Variable(apple_num, name="b")

c = tfg.Variable(orange_price, name="c")
d = tfg.Variable(orange_num, name="d")

e = tfg.Variable(tax, name="e")

# Create Mul operation node
f = tfg.Mul(a, b, name="f")
g = tfg.Mul(c, d, name="g")

# Create Add operation node
h = tfg.Add(f, g, name="h")

# Create Mul operation node
i = tfg.Mul(h, e, name="i")