Пример #1
0
def directsum(tensors,labels,axes=()):
    '''
    The directsum of a couple of tensors.

    Parameters
    ----------
    tensors : list of DTensor/STensor
        The tensors to be directsummed.
    labels : list of Label
        The labels of the directsum.
    axes : list of int, optional
            The axes along which the directsum is block diagonal.

    Returns
    -------
    DTensor/STensor
        The directsum of the tensors.
    '''
    TENSOR=next(iter(tensors))
    assert TENSOR.ndim>len(axes)
    assert len({tensor.ndim for tensor in tensors})==1
    assert len({tuple(tensor.shape[axis] for axis in axes) for tensor in tensors})==1
    assert len({tuple(label.flow for label in tensor.labels) for tensor in tensors})==1
    alters=set(range(TENSOR.ndim))-set(axes)
    dtype=np.find_common_type([],[tensor.dtype for tensor in tensors])
    if isinstance(TENSOR,DTensor):
        assert len({tensor.qnon for tensor in tensors})==1
        for alter in alters: labels[alter].qns=(QuantumNumbers.union if TENSOR.qnon else np.sum)([tensor.labels[alter].qns for tensor in tensors])
        for axis in range(TENSOR.ndim): labels[axis].flow=TENSOR.labels[axis].flow
        for axis in axes: labels[axis].qns=TENSOR.labels[axis].qns
        data=np.zeros(tuple(len(label.qns) if isinstance(label.qns,QuantumNumbers) else label.qns for label in labels),dtype=dtype)
        slices=[slice(0,0,0) if axis in alters else slice(None,None,None) for axis in range(TENSOR.ndim)]
        for tensor in tensors:
            for alter in alters: slices[alter]=slice(slices[alter].stop,slices[alter].stop+tensor.shape[alter])
            data[tuple(slices)]=tensor.data
    else:
        for alter in alters: labels[alter].qns=QuantumNumbers.union([tensor.labels[alter].qns for tensor in tensors]).sorted(history=False)
        for axis in range(TENSOR.ndim): labels[axis].flow=TENSOR.labels[axis].flow
        for axis in axes: labels[axis].qns=TENSOR.labels[axis].qns
        ods=[label.qns.toordereddict(protocol=QuantumNumbers.COUNTS) for label in labels]
        data,counts={},{alter:{} for alter in alters}
        for tensor in tensors:
            for alter in alters:
                for qn,count in tensor.labels[alter].qns.items(protocol=QuantumNumbers.COUNTS):
                    counts[alter][qn]=counts[alter].get(qn,0)+count
            for qns,block in tensor.data.items():
                if qns not in data:
                    data[qns]=np.zeros(tuple(od[qn] for od,qn in zip(ods,qns)),dtype=dtype)
                slices=[slice(counts[i][qns[i]]-block.shape[i],counts[i][qns[i]],None) if i in alters else slice(None,None,None) for i in range(TENSOR.ndim)]
                data[qns][tuple(slices)]=block
    return type(TENSOR)(data,labels=labels)
Пример #2
0
def directsum(tensors, labels, axes=()):
    '''
    The directsum of a couple of tensors.

    Parameters
    ----------
    tensors : list of DTensor/STensor
        The tensors to be directsummed.
    labels : list of Label
        The labels of the directsum.
    axes : list of int, optional
            The axes along which the directsum is block diagonal.

    Returns
    -------
    DTensor/STensor
        The directsum of the tensors.
    '''
    TENSOR = next(iter(tensors))
    assert TENSOR.ndim > len(axes)
    assert len({tensor.ndim for tensor in tensors}) == 1
    assert len(
        {tuple(tensor.shape[axis] for axis in axes)
         for tensor in tensors}) == 1
    assert len(
        {tuple(label.flow for label in tensor.labels)
         for tensor in tensors}) == 1
    alters = set(xrange(TENSOR.ndim)) - set(axes)
    if isinstance(TENSOR, DTensor):
        assert len({tensor.qnon for tensor in tensors}) == 1
        shape, dtypes = [
            0 if axis in alters else TENSOR.shape[axis]
            for axis in xrange(TENSOR.ndim)
        ], []
        for tensor in tensors:
            for alter in alters:
                shape[alter] += tensor.shape[alter]
            dtypes.append(tensor.dtype)
        data = np.zeros(tuple(shape), dtype=np.find_common_type([], dtypes))
        slices = [
            slice(0, 0, 0) if axis in alters else slice(None, None, None)
            for axis in xrange(TENSOR.ndim)
        ]
        for tensor in tensors:
            for alter in alters:
                slices[alter] = slice(slices[alter].stop,
                                      slices[alter].stop + tensor.shape[alter])
            data[tuple(slices)] = tensor.data
        for alter in alters:
            labels[alter].qns = (QuantumNumbers.union
                                 if TENSOR.qnon else np.sum)([
                                     tensor.labels[alter].qns
                                     for tensor in tensors
                                 ])
    else:
        content = {}
        for qns, block in it.chain(*tuple(tensor.iteritems()
                                          for tensor in tensors)):
            if qns not in content:
                content[qns] = ([
                    0 if axis in alters else block.shape[axis]
                    for axis in xrange(block.ndim)
                ], [], [])
            for alter in alters:
                content[qns][0] += block.shape[alter]
            content[qns][1].append(block.dtype)
            content[qns][2].append(block)
        data = {}
        for qns, (shape, dtypes, blocks) in content.iteritems():
            data[qns] = np.zeros(tuple(shape),
                                 dtype=np.find_common_type([], dtypes))
            slices = [
                slice(0, 0, 0) if axis in alters else slice(None, None, None)
                for axis in xrange(TENSOR.ndim)
            ]
            for block in blocks:
                for alter in alters:
                    slices[alter] = slice(
                        slices[alter].stop,
                        slices[alter].stop + block.shape[alter])
                data[tupe(slices)] = block
        for alter in alters:
            labels[alter].qns = QuantumNumbers.union([
                tensor.labels[alter].qns for tensor in tensors
            ]).sorted(history=False)
    for axis in xrange(TENSOR.ndim):
        labels[axis].flow = TENSOR.labels[axis].flow
    for axis in axes:
        labels[axis].qns = tensor.labels[axis].qns
    return type(TENSOR)(data, labels=labels)