Пример #1
0
            plt.scatter(x[i,0], x[i,1], marker='^', c='r', s=200)
        else:
            plt.scatter(x[i,0], x[i,1], marker='^', c='b', s=200)
    """


# 主程序
if __name__ == '__main__':
    # data
    reader = SimpleDataReader()
    reader.ReadData()
    draw_source_data(reader, show=True)
    # net
    num_input = 2
    num_output = 1
    params = HyperParameters(num_input,
                             num_output,
                             eta=0.1,
                             max_epoch=10000,
                             batch_size=10,
                             eps=1e-3,
                             net_type=NetType.BinaryClassifier)
    net = NeuralNet(params)
    net.train(reader, checkpoint=10)

    # show result
    draw_source_data(reader, show=False)
    draw_predicate_data(net)
    draw_split_line(net)
    plt.show()
Пример #2
0
def ShowResult(net, dataReader, title):
    # draw train data
    X,Y = dataReader.XTrain, dataReader.YTrain
    plt.plot(X[:,0], Y[:,0], '.', c='b')
    # create and draw visualized validation data
    TX1 = np.linspace(0,1,100).reshape(100,1)
    TX = np.hstack((TX1, TX1[:,]**2))
    TX = np.hstack((TX, TX1[:,]**3))
    TX = np.hstack((TX, TX1[:,]**4))
    TX = np.hstack((TX, TX1[:,]**5))

    TY = net.inference(TX)
    plt.plot(TX1, TY, 'x', c='r')
    plt.title(title)
    plt.show()
#end def

if __name__ == '__main__':
    dataReader = DataReaderEx(file_name)
    dataReader.ReadData()
    dataReader.Add()
    print(dataReader.XTrain.shape)

    # net
    num_input = 5
    num_output = 1
    params = HyperParameters(num_input, num_output, eta=0.2, max_epoch=10000, batch_size=10, eps=0.005, net_type=NetType.Fitting)
    net = NeuralNet(params)
    net.train(dataReader, checkpoint=10)
    ShowResult(net, dataReader, params.toString())
Пример #3
0
    plt.plot(X[:,0], Y[:,0], '.', c='b')
    # create and draw visualized validation data
    TX1 = np.linspace(0,1,100).reshape(100,1)
    TX2 = np.hstack((TX1, TX1[:,]**2))
    TX3 = np.hstack((TX2, TX1[:,]**3))
    TX4 = np.hstack((TX3, TX1[:,]**4))
    TX5 = np.hstack((TX4, TX1[:,]**5))
    TX6 = np.hstack((TX5, TX1[:,]**6))
    TX7 = np.hstack((TX6, TX1[:,]**7))
    TX8 = np.hstack((TX7, TX1[:,]**8))
    TY = net.inference(TX8)
    plt.plot(TX1, TY, 'x', c='r')
    plt.title(title)
    plt.show()
#end def

if __name__ == '__main__':
    dataReader = DataReaderEx(file_name)
    dataReader.ReadData()
    dataReader.Add()
    print(dataReader.XTrain.shape)

    # net
    num_input = 8
    num_output = 1    
    params = HyperParameters(num_input, num_output, eta=0.2, max_epoch=50000, batch_size=10, eps=1e-3, net_type=NetType.Fitting)
    #params = HyperParameters(eta=0.2, max_epoch=1000000, batch_size=10, eps=1e-3, net_type=NetType.Fitting)
    net = NeuralNet(params)
    net.train(dataReader, checkpoint=500)
    ShowResult(net, dataReader, "Polynomial")
Пример #4
0
# Copyright (c) Microsoft. All rights reserved.
# Licensed under the MIT license. See LICENSE file in the project root for full license information.

from HelperClass.NeuralNet import *
from HelperClass.HyperParameters import *

if __name__ == '__main__':
    sdr = SimpleDataReader()
    sdr.ReadData()
    params = HyperParameters(1, 1, eta=0.1, max_epoch=100, batch_size=1, eps = 0.02)
    net = NeuralNet(params)
    net.train(sdr)
def inference(net, reader):
    xt_raw = np.array([5, 1, 7, 6, 5, 6, 2, 7]).reshape(4, 2)
    xt = reader.NormalizePredicateData(xt_raw)
    output = net.inference(xt)
    r = np.argmax(output, axis=1) + 1
    print("output=", output)
    print("r=", r)


# 主程序
if __name__ == '__main__':
    num_category = 3
    reader = SimpleDataReader()
    reader.ReadData()
    reader.NormalizeX()
    reader.ToOneHot(num_category, base=1)

    num_input = 2
    params = HyperParameters(num_input,
                             num_category,
                             eta=0.1,
                             max_epoch=100,
                             batch_size=10,
                             eps=1e-3,
                             net_type=NetType.MultipleClassifier)
    net = NeuralNet(params)
    net.train(reader, checkpoint=1)

    inference(net, reader)