Пример #1
0
def test_folder_func(folder_name, FF_BATCH_SIZE):
    STACKCOUNT = 15
    TARGET_FPS = 20
    take_last = lambda x: og_folder + "/" + x.split('/')[-1].split('.')[
        0] + "_trained_on_" + folder_name.split("/")[-2]

    # eval_files = [  "E:/Master/Converted Mocap/Eyes_Japan_Dataset/hamada/greeting-01-hello-hamada_poses.npz",
    #                 "E:/Master/Converted Mocap/Eyes_Japan_Dataset/kudo/jump-12-boxer step-kudo_poses.npz",
    #                 "E:/Master/Converted Mocap/KIT/576/MarcusS_AdrianM11_poses.npz",
    #                 "E:/Master/Converted Mocap/KIT/513/balance_on_beam06_poses.npz",
    #                 "E:/Master/Converted Mocap/Eyes_Japan_Dataset/hamada/gesture_etc-14-apologize-hamada_poses.npz",
    #                 "E:/Master/Converted Mocap/Eyes_Japan_Dataset/kanno/walk-01-normal-kanno_poses.npz",
    #                 "E:/Master/Converted Mocap/Eyes_Japan_Dataset/takiguchi/pose-10-recall blackmagic-takiguchi_poses.npz",
    #                 "E:/Master/Converted Mocap/TotalCapture/s1/freestyle2_poses.npz",
    #                 "E:/Master/Converted Mocap/Eyes_Japan_Dataset/hamada/accident-02-dodge fast-hamada_poses.npz",
    #                 "E:/Master/Converted Mocap/BMLhandball/S07_Expert/Trial_upper_left_right_003_poses.npz"]

    # eval_files_old = [ "E:/Master/Sorted Mocap/WALKING/WALKING_2265.npz",
    #                "E:/Master/Sorted Mocap/BASKETBALL/BASKETBALL_10.npz",
    #                "E:/Master/Sorted Mocap/BOXING/BOXING_64.npz",
    #                "E:/Master/Sorted Mocap/THROWING/THROWING_58.npz",
    #                "E:/Master/Sorted Mocap/INTERACTION/INTERACTION_1534.npz"
    #                ]
    PATH_PREFIX = "E:/Master/Sorted Mocap/WALKING/WALKING_"
    numbers = [
        45,
        720,
        734,  #bwd
        338,
        1148,
        2112,  #circle
        650,
        763,
        2308,  #diagonal
        976,
        1514,
        2016,  #fwd
        12,
        13,
        772  #sideways
    ]
    # numbers = []

    eval_files = [PATH_PREFIX + str(elem) + ".npz" for elem in numbers]
    # eval_files = [ "E:/Master/Sorted Mocap/WALKING/WALKING_42.npz",
    #                "E:/Master/Sorted Mocap/WALKING/WALKING_360.npz",
    #                "E:/Master/Sorted Mocap/WALKING/WALKING_420.npz",
    #                "E:/Master/Sorted Mocap/WALKING/WALKING_1337.npz",
    #                "E:/Master/Sorted Mocap/WALKING/WALKING_2265.npz",
    #                ]

    training_prep = DataPreprocessor.ParalellMLPProcessor(
        STACKCOUNT, 1.0 / TARGET_FPS, 5, use_weighted_sampling=True)

    training_prep.append_folder(folder_name,
                                eval_files,
                                mirror=True,
                                reverse=True)
    training_prep.finalize()
    # training_prep.save(folder_name + "walking_augmented_5.npz")
    # training_prep.load_np(folder_name + "walking_augmented_3.npz")
    # from Helpers import StatsPrinter
    # StatsPrinter.print_dirs(training_prep)

    # training_prep.load_np(folder_name + "walking_augmented_2.npz")
    # training_prep.load_np(folder_name + "walking_2.npz")

    # training_prep.load_np(folder_name + "combined.npz")
    # training_prep.append_subfolders("E:/Master/Converted Mocap/BMLhandball", eval_files)
    # training_prep.append_subfolders("E:/Master/Converted Mocap/BMLmovi", eval_files)
    # training_prep.append_subfolders("E:/Master/Converted Mocap/DFaust_67", eval_files)
    # training_prep.append_subfolders("E:/Master/Converted Mocap/EKUT", eval_files)
    # training_prep.append_subfolders("E:/Master/Converted Mocap/Eyes_Japan_Dataset", eval_files)
    # training_prep.append_subfolders("E:/Master/Converted Mocap/HumanEva", eval_files)
    # training_prep.append_subfolders("E:/Master/Converted Mocap/Kit", eval_files)
    # training_prep.append_subfolders("E:/Master/Converted Mocap/MPI_HDM05", eval_files)
    # training_prep.append_subfolders("E:/Master/Converted Moca/MPI_Limits", eval_files)
    # training_prep.append_subfolders("E:/Master/Converted Mocap/MPI_mosh", eval_files)
    # training_prep.append_subfolders("E:/Master/Converted Mocap/SFU", eval_files)
    # training_prep.append_subfolders("E:/Master/Converted Mocap/TotalCapture", eval_files)

    # training_prep.append_file("E:/Master/Sorted Mocap/WALKING/WALKING_2265.npz")
    # training_prep.finalize()
    # for idx in range(1,eval_files.__len__()):
    #     training_prep.append_file(eval_files[idx])
    # training_prep.append_file(eval_files[1])

    # loss_test_wrapper = ModelWrappers.ae_perceptual_loss(training_prep)
    # loss_test_wrapper.train(400, 600, 0.01)
    # gan_wrapper = None

    timings_file = "timings.txt"
    FileHelpers.clear_file(timings_file)

    # gan_wrapper = ModelWrappers.gan_wrapper(training_prep)
    # gan_wrapper.train(1, FF_BATCH_SIZE, 0.0001)

    # GLOW
    # glow_wrapper = ModelWrappers.glow_wrapper(training_prep)
    #
    # last_time = time.perf_counter()
    #
    # glow_wrapper.train(60, 180)
    #
    # comp_time = time.perf_counter()
    # total_time = comp_time - last_time
    # time_per_epoch = total_time / 60
    # FileHelpers.append_line(timings_file, "GLOW Training, time per epoch:" + str(time_per_epoch) + "\t timing:" + str(total_time))
    #
    # for file in eval_files:
    #     eval_prep = DataPreprocessor.ParalellMLPProcessor(STACKCOUNT, 1.0 / TARGET_FPS, 5)
    #     eval_prep.append_file(file)
    #     eval_prep.finalize()
    #
    #     glow_wrapper.predict(eval_prep)
    #
    #     total_time = glow_wrapper.last_inference_time
    #     time_per_frame = total_time / glow_wrapper.final_outputs.shape[0]
    #     FileHelpers.append_line(timings_file, "GLOW, file: "+ str(file) + "\t time per frame: " + str(time_per_frame)+ "\t timing:" +str(total_time) + "\t length:" + str(glow_wrapper.final_outputs.shape[0]))
    #
    #     glow_wrapper.save_prediction(take_last(file) + "_GLOW", gan_wrapper)
    #
    # torch.cuda.empty_cache()

    # FF

    # ff_wrapper = ModelWrappers.ff_wrapper(training_prep)
    #
    # last_time = time.perf_counter()
    #
    # ff_wrapper.train(120, FF_BATCH_SIZE, 0.0001)
    #
    # comp_time = time.perf_counter()
    # total_time = comp_time - last_time
    # time_per_epoch = total_time / 120
    # FileHelpers.append_line(timings_file, "FF Training, time per epoch:" + str(time_per_epoch) + "\t timing:" + str(total_time))
    #
    # for file in eval_files:
    #     eval_prep = DataPreprocessor.ParalellMLPProcessor(STACKCOUNT, 1.0 / TARGET_FPS, 5)
    #     eval_prep.append_file(file)
    #     eval_prep.finalize()
    #
    #     ff_wrapper.predict(eval_prep)
    #
    #     total_time = ff_wrapper.last_inference_time
    #     time_per_frame = total_time / ff_wrapper.final_outputs.shape[0]
    #     FileHelpers.append_line(timings_file, "FF, file: "+ str(file) + "\t time per frame: " + str(time_per_frame)+ "\t timing:" +str(total_time) + "\t length:" + str(ff_wrapper.final_outputs.shape[0]))
    #
    #     ff_wrapper.save_prediction(take_last(file) + "_FF", None)
    #
    # torch.cuda.empty_cache()
    #
    #rnn2
    rnn_wrapper = ModelWrappers.rnn_wrapper_2(training_prep)

    last_time = time.perf_counter()

    # rnn_wrapper.train(80, FF_BATCH_SIZE, 0.0001)
    rnn_wrapper.load_model('rnn_test_save')

    comp_time = time.perf_counter()
    total_time = comp_time - last_time
    time_per_epoch = total_time / 120
    FileHelpers.append_line(
        timings_file, "RNN Training, time per epoch:" + str(time_per_epoch) +
        "\t timing:" + str(total_time))

    for file in eval_files:
        eval_prep = DataPreprocessor.ParalellMLPProcessor(
            STACKCOUNT, 1.0 / TARGET_FPS, 5)
        eval_prep.append_file(file)
        eval_prep.finalize()

        rnn_wrapper.predict(eval_prep)

        total_time = rnn_wrapper.last_inference_time
        time_per_frame = total_time / rnn_wrapper.final_outputs.shape[0]
        FileHelpers.append_line(
            timings_file, "RNN, file: " + str(file) + "\t time per frame: " +
            str(time_per_frame) + "\t timing:" + str(total_time) +
            "\t length:" + str(rnn_wrapper.final_outputs.shape[0]))

        rnn_wrapper.save_prediction(take_last(file) + "_RNN2", None)
Пример #2
0
ax.set_xticks(x)
ax.set_xticklabels(labels)
ax.legend()


def autolabel(rects):
    """Attach a text label above each bar in *rects*, displaying its height."""
    for rect in rects:
        height = rect.get_height()
        ax.annotate(
            '{}'.format(height),
            xy=(rect.get_x(), height),
            xytext=(0, 3),  # 3 points vertical offset
            textcoords="offset points",
            ha='center',
            va='bottom')


from Helpers import FileHelpers
FileHelpers.clear_file("file_count.txt")
values = ','.join([str(elem) for elem in values])
labels = ','.join([str(elem) for elem in labels])

FileHelpers.append_line("file_count.txt", values)
FileHelpers.append_line("file_count.txt", labels)
autolabel(rects1)

fig.tight_layout()

plt.show()