Пример #1
0
    def img(self,
            src,
            *,
            text="",
            title=None,
            copy=True,
            ignore=False,
            raw=True,
            copy_sync=False):
        res = component.link(
            src=src,
            md_dir=self.path.parent,
            text=text,
            img=True,
            title=title,
            copy=copy,
            ignore=ignore,
            new_line=True,
        )
        if raw:
            display_res = component.link(
                src=src,
                md_dir=".",
                text=text,
                title=title,
                copy=False,
                ignore=True,
                copy_sync=copy_sync,
            )

            display_markdown(display_res, raw=raw)

        return self._save(res)
Пример #2
0
Файл: _base.py Проект: chmp/csc
    def _run_markdown(self, ns, env: "Env"):
        try:
            from IPython.display import display_markdown

        except ImportError:
            display_markdown = lambda code, raw: print(code)

        source = "\n".join(line[2:] for line in self.source.splitlines())
        display_markdown(source, raw=True)
Пример #3
0
def md(*args):
    s = ''
    for x in args:
        if (isinstance(x, sp.Basic) or isinstance(x, sp.MutableDenseMatrix) or isinstance(x, tuple)):
            s = s + sp.latex(x)
        elif (isinstance(x, str)): s = s + x
        elif (isinstance(x, int) or isinstance(x, float)): s = s + str(x)
        else: print(type(x))
    Display.display_markdown(s, raw=True)
Пример #4
0
    def step_start(self, exp, step):
        title = step.replace('_', ' ').title()
        display_markdown(f'## {title}', raw=True)

        params = exp.get_step(step).get_params()
        data = self.params_to_display(params)
        if data is not None:
            display_markdown('### Initliazed parameters', raw=True)
            display(data, display_id=f'input_{step}')
Пример #5
0
def display_mds(*strings):
    """
    Utility function to display several strings formatted in markdown format

    :param strings: any number of strings with text in markdown format
    :return: None
    """
    for string in strings:
        display_markdown(Markdown(data=string))
Пример #6
0
def md(*args):
    s = ''
    for x in args:
        if (isinstance(x, sp.Basic) or isinstance(x, sp.MutableDenseMatrix) or isinstance(x, tuple) or isinstance(x, np.ndarray)):
            s = s + sp.latex(x)
        elif (isinstance(x, str)): s = s + x
        elif (isinstance(x, int) or isinstance(x, float)): s = s + str(x)
        else: print(type(x))
    Display.display_markdown(s, raw=True)
Пример #7
0
 def write_details(self, short: bool = False, keys_limit: int = 10) -> None:
     for result in self.results.values():
         if result.detailed_messages_count:
             display_markdown(
                 f"{result.name} ({result.detailed_messages_count} message(s)):"
             )
             self.write_rule_details(result, short, keys_limit)
         for f in result.figures:
             f.show()
         display_markdown("<br>")
Пример #8
0
Файл: ipy.py Проект: chmp/flowly
def printmk(*args, **kwargs):
    """Print markdown in ipython.
    """
    if not args:
        return

    fmt, args = args[0], args[1:]

    from IPython.display import display_markdown, Markdown
    display_markdown(Markdown(fmt.format(*args, **kwargs)))
Пример #9
0
    def display_params(self, index, in_shell=False):
        display_markdown(f"#### Params: {index}", raw=True)

        params = (pd.Series(
            self._load_artifact(artifact_type="params",
                                index=index)).rename("params").to_frame())

        if in_shell is True:
            print(tabulate(params, headers="keys", tablefmt="psql"))
        else:
            display(params)
Пример #10
0
def print_model_score(model, x_train, y_train, x_test, y_test):
    training_score = matthews_corrcoef(model.predict(x_train), y_train)
    test_score = matthews_corrcoef(model.predict(x_test), y_test)

    display_markdown(
        '**Matthews correlation coeff., training set: {}**'.format(
            np.round(training_score, 2)),
        raw=True)
    display_markdown('**Matthews correlation coeff., test set: {}**'.format(
        np.round(test_score, 2)),
                     raw=True)
Пример #11
0
    def display(self, in_shell=False):
        self.display_metrics(in_shell=in_shell)

        metrics = self._build_metrics()
        best_index = metrics["total_return"].sort_values(
            ascending=False).index[0]

        display_markdown(f"### [+] Best index: {best_index}", raw=True)

        display(metrics.loc[best_index])
        self.display_params(index=best_index, in_shell=in_shell)
        self.display_report(index=best_index, in_shell=in_shell)
Пример #12
0
    def experiment_start(self, exp):
        self.exp = exp
        self.steps = OrderedDict()
        self.running = True

        display_markdown('### Input Data', raw=True)

        X_train, y_train, X_test, X_eval, y_eval = \
            exp.X_train, exp.y_train, exp.X_test, exp.X_eval, exp.y_eval
        tb = get_tool_box(X_train, y_train, X_test, X_eval, y_eval)
        display_data = (tb.get_shape(X_train), tb.get_shape(y_train),
                        tb.get_shape(X_eval, allow_none=True),
                        tb.get_shape(y_eval, allow_none=True),
                        tb.get_shape(X_test, allow_none=True),
                        exp.task if exp.task == const.TASK_REGRESSION else
                        f'{exp.task}({tb.to_local(y_train.nunique())[0]})')
        display(pd.DataFrame([display_data],
                             columns=[
                                 'X_train.shape',
                                 'y_train.shape',
                                 'X_eval.shape',
                                 'y_eval.shape',
                                 'X_test.shape',
                                 'Task',
                             ]),
                display_id='output_intput')

        try:
            import seaborn as sns
            import matplotlib.pyplot as plt
            from sklearn.preprocessing import LabelEncoder
            if exp.task == const.TASK_REGRESSION:
                # Draw Plot
                plt.figure(figsize=(8, 4), dpi=80)
                sns.kdeplot(y_train.dropna(),
                            shade=True,
                            color="g",
                            label="Proba",
                            alpha=.7,
                            bw_adjust=0.01)
            else:
                le = LabelEncoder()
                y = le.fit_transform(y_train.dropna())
                # Draw Plot
                plt.figure(figsize=(8, 4), dpi=80)
                sns.distplot(y, kde=False, color="g", label="y")
            # Decoration
            plt.title('Distribution of y', fontsize=22)
            plt.legend()
            plt.show()
        except:
            pass
Пример #13
0
    def step_end(self, exp, step, output, elapsed):
        super().step_end(exp, step, output, elapsed)

        fitted_params = exp.get_step(step).get_fitted_params()
        importances = fitted_params.get('importances')
        if importances is not None:
            df = pd.DataFrame(zip(importances['columns'],
                                  importances['importances_mean'],
                                  importances['importances_std']),
                              columns=['feature', 'importance', 'std'])

            display_markdown('### Permutation importances', raw=True)
            display(df, display_id=f'output_{step}_importances')
Пример #14
0
    def display_report(self, report):
        display_markdown(f"#### Report: {self.base_currency}", raw=True)
        _, ax = plt.subplots(4, 1, figsize=(12, 12), sharex=True)

        for idx, column in enumerate(["capital", "cache", "return", "trade_return"]):
            if column == "trade_return":
                report[column].dropna().apply(lambda x: sum(x)).plot(ax=ax[idx])

            else:
                report[column].plot(ax=ax[idx])

            ax[idx].set_title(f"historical {column}")

        plt.tight_layout()
        plt.show()
Пример #15
0
    def rec(self, data, *, h=None, title=None, raw=True):
        res = ""
        if any(list(map(lambda t: isinstance(data, t), [DataFrame, Series]))):
            default_h = h or 2
            res += component.table(data, h=default_h, title=title)
        elif isinstance(data, Iterable) and (not isinstance(
                data, str)):  # except type of str
            res += component.enum(data)
        else:
            res += component.header(data, h=h)

        quote = self.generate_quote()
        res = "".join([quote + line for line in res.splitlines(keepends=True)])

        display_markdown(res, raw=raw)

        return self._save(res)
Пример #16
0
        def _display(df: pyspark.sql.DataFrame,
                     num_rows: int = 5,
                     truncate: bool = False,
                     mimetype: str = 'text/html') -> ():
            """
            Invoke IPython `display` with specific controls.
            :param num_rows: number of rows to render
            :param truncate: If `True`, shorten width of columns to no more than 40 characters
            :return: None
            """

            if "html" in mimetype:
                display_html(spark_df_to_html(df, num_rows, truncate),
                             raw=True)
            else:
                display_markdown(spark_df_to_markdown(df, num_rows, truncate),
                                 raw=True)
Пример #17
0
def display_json(builder, indent=2):
    """Pretty print a dictionary object in a Jupyter Notebook."""
    from IPython.display import display_markdown

    return display_markdown(
        "```json\n{}\n```".format(
            json.dumps(builder, cls=BuilderEncoder, indent=indent)),
        raw=True,
    )
Пример #18
0
    def step_end(self, exp, step, output, elapsed):
        super().step_end(exp, step, output, elapsed)

        fitted_params = exp.get_step(step).get_fitted_params()
        input_features = fitted_params.get('input_features')
        selected = fitted_params.get('selected_features')
        if selected is None:
            selected = input_features
        importances = fitted_params.get('importances', [])
        is_selected = [
            input_features[i] in selected for i in range(len(importances))
        ]
        df = pd.DataFrame(zip(input_features, importances, is_selected),
                          columns=['feature', 'importance', 'selected'])
        df = df.sort_values('importance', axis=0, ascending=False)

        display_markdown('### Feature importances', raw=True)
        display(df, display_id=f'output_{step}_importances')
Пример #19
0
    def write_detailed_errors(cls, errors: Dict, short: bool,
                              keys_limit: int) -> None:
        error_messages = sorted(errors.items(),
                                key=lambda i: len(i[1]),
                                reverse=True)

        if short:
            keys_limit = 5
            error_messages = error_messages[:5]

        for attribute, keys in error_messages:
            if isinstance(keys, list):
                keys = pd.Series(keys)
            if isinstance(keys, set):
                keys = pd.Series(list(keys))

            sample = Report.sample_keys(keys, keys_limit)
            display_markdown(
                f"{len(keys)} items affected - {attribute}: {sample}")
Пример #20
0
    def print_events(self):
        week = 0
        module = 0
        lastday = 8
        mdtext = 'Welcome to Molecular Spectroscopy!\r\rThe schedule below will be updated regularly with links to online materials for each lecture. Dark blue text indicates a Jupyter Notebook-based programming/simulation module, while light-blue headings link to PDF-format lecture notes. Holidays are indicated in purple. Underlining indicates that the link is active and ready for use.\r\rPlease note! You\'ll need to be logged into your Brightspace account to view the video lectures. (Videos are actually hosted on Brightspace, although links are provided here.)\r\rClick [here](git/CHM676/src/CHM676_Syllabus_2020.pdf) for the course syllabus. ([Here](https://983291-6.kaf.kaltura.com/media/t/0_cwi5kkdu/177251882) for a video walk-through.)\r\r**Information on the [Final Project](git/CHM676/src/CHM676_Final_Project.pdf) is now posted**.'
        for item in self.events:
            if item.isnew:
                module += 1
                mdtext += "\r"
                mdtext += '## Module ' + str(module) + " \r"
            if item.date.weekday() < lastday:
                week += 1
                mdtext += '#### Week ' + str(week) + "\r"
            lastday = item.date.weekday()
            datetext = " * " + item.date.strftime("%b %-d") + ": "

            holiday_color = 'Purple'
            lecture_color = '#3090C7'
            compute_color = 'DarkBlue'

            if item.cformat == 'holiday':
                titlecol = holiday_color
            elif item.cformat == 'lecture':
                titlecol = lecture_color
            elif item.cformat == 'compute':
                titlecol = compute_color
            else:
                titletext = item.title

            if len(item.link) > 0:
                titletext = "<a href=\"" + item.link + "\"> <span style=\"color:" + titlecol + ";text-decoration:underline\">" + item.title + "</span></a>"
            else:
                titletext = "<span style=\"color:" + titlecol + "\">" + item.title + "</span>"
                #titletext = '[' + titletext + '](' + item.link + ')'

            if len(item.vlink) > 0:
                titletext += ' ([video](' + item.vlink + '))'

            mdtext += datetext + titletext + " \r\r"
        display_markdown(mdtext, raw=True)
Пример #21
0
    def display_report(self, index, in_shell=False):
        report = self._load_artifact(artifact_type="report", index=index)

        display_markdown(f"#### Report: {index}", raw=True)
        _, ax = plt.subplots(4, 1, figsize=(12, 12), sharex=True)

        for idx, column in enumerate(
            ["capital", "cache", "return", "trade_return"]):
            if column == "trade_return":
                report[column].dropna().apply(lambda x: sum(x)).plot(
                    ax=ax[idx])

            else:
                report[column].plot(ax=ax[idx])

            ax[idx].set_title(f"historical {column}")

        plt.tight_layout()

        if in_shell is True:
            plt.show(block=True)
        else:
            plt.show()
Пример #22
0
    def step_end(self, exp, step, output, elapsed):
        step_obj = exp.get_step(step)
        fitted_params = step_obj.get_fitted_params()
        data = self.fitted_params_to_display(fitted_params)
        if data is not None:
            display_markdown('### Fitted parameters', raw=True)
            display(data, display_id=f'output_{step}')

        display_markdown('### Elapsed', raw=True)
        display_markdown(f'* {step_obj.elapsed_seconds:.3f} seconds', raw=True)
Пример #23
0
    def on_search_start(self, hyper_model, X, y, X_eval, y_eval, cv, num_folds,
                        max_trials, dataset_id, trial_store, **fit_kwargs):
        self.start_time = time.time()
        self.max_trials = max_trials

        df_holder = pd.DataFrame()
        settings = {
            'X': X.shape,
            'y': y.shape,
            'X_eval': X_eval.shape if X_eval is not None else None,
            'y_eval': y_eval.shape if y_eval is not None else None,
            'cv': cv,
            'num_folds': num_folds,
            'max_trials': max_trials,
            # 'dataset_id': dataset_id,
            # 'trail_store': trial_store,
            'fit_kwargs': fit_kwargs.keys()
        }
        df_settings = pd.DataFrame({k: [v] for k, v in settings.items()})

        display_markdown('#### Experiment Settings:', raw=True)
        display(hyper_model, display_id=False)
        display(df_settings, display_id=False)

        display_markdown('#### Trials Summary:', raw=True)
        handle = display(df_holder, display_id=True)
        if handle is not None:
            self.search_summary_display_id = handle.display_id

        display_markdown('#### Best Trial:', raw=True)
        handle = display(df_holder, display_id=True)
        if handle is not None:
            self.best_trial_display_id = handle.display_id

        handle = display({'text/markdown': '#### Current Trial:'},
                         raw=True,
                         include=['text/markdown'],
                         display_id=True)
        if handle is not None:
            self.title_display_id = handle.display_id

        handle = display(df_holder, display_id=True)
        if handle is not None:
            self.current_trial_display_id = handle.display_id
Пример #24
0
def document(name):
  for line in _Document_[name]:
    Display.display_markdown(''.join(line), raw=True)
Пример #25
0
 def write_rule_name(rule_name: str) -> None:
     display_markdown(f"{rule_name}:")
Пример #26
0
    def display_performance(self):
        data_dict = self._load_data_dict()

        display_markdown("#### Timeseries", raw=True)
        self._display_timeseries(data_dict=data_dict)

        display_markdown("#### Total Performance", raw=True)
        total_performance = self._build_total_performance(data_dict=data_dict)
        display(
            ft.display(total_performance.rename("bin_acc").to_frame().T,
                       axis=1))

        # Build levels
        label_levels = self._build_levels(data=data_dict["labels"])
        prediction_levels = self._build_levels(data=data_dict["predictions"])
        abs_prediction_levels = self._build_levels(
            data=data_dict["predictions"].abs())
        probability_levels = self._build_levels(
            data=data_dict["probabilities"])

        display_markdown("#### Performance on label levels", raw=True)
        display(
            ft.display(
                self._build_performance_on_levels(data_dict=data_dict,
                                                  levels=label_levels)))

        display_markdown("#### Performance on prediction levels", raw=True)
        display(
            ft.display(
                self._build_performance_on_levels(data_dict=data_dict,
                                                  levels=prediction_levels)))

        display_markdown("#### Performance on abs(prediction) levels",
                         raw=True)
        display(
            ft.display(
                self._build_performance_on_levels(
                    data_dict=data_dict, levels=abs_prediction_levels)))

        display_markdown("#### Performance on probability levels", raw=True)
        display(
            ft.display(
                self._build_performance_on_levels(data_dict=data_dict,
                                                  levels=probability_levels)))
Пример #27
0
def document(name):
    for line in _Document_[name]:
        Display.display_markdown(''.join(line), raw=True)
Пример #28
0
import os
import re
import pickle
import sympy

import numpy as np
import scipy as sp

import plotly
import plotly.offline as py
import plotly.graph_objs as go
import plotly.figure_factory as ff

from plotly.offline import download_plotlyjs, init_notebook_mode
from IPython.display import display, display_markdown, Image

sympy.init_printing()
init_notebook_mode(connected=True)
show = lambda s: display_markdown(s, raw=True)
Пример #29
0
#%% Load Dependencies
from IPython.display import display_markdown
from pyvlm import LatticeResult
from pyvlm import latticesystem_from_json

#%% Create Lattice System
jsonfilepath = '../files/Test_taper.json'
lsys = latticesystem_from_json(jsonfilepath)
display_markdown(lsys)

#%% Original Strip Geometry
display_markdown(lsys.strip_geometry)

#%% Original Strip Geometry
display_markdown(lsys.panel_geometry)

#%% Original Case
lres_org = LatticeResult('Baseline', lsys)
lres_org.set_state(alpha=3.0)

#%% Original Strip Forces
display_markdown(lres_org.strip_forces)

#%% Original Strip Coefficients
display_markdown(lres_org.strip_coefficients)

#%% Original Panel Forces
display_markdown(lres_org.panel_forces)

#%% Print Result
display_markdown(lres_org)
Пример #30
0
#%%
# Import Dependencies
from IPython.display import display_markdown
from pyapm import panelsystem_from_json
from pyapm.classes.horseshoevortex2d import HorseshoeVortex2D, Vector2D
from pyapm.outputs.msh import panelresult_to_msh
from matplotlib.pyplot import figure
from pygeom.matrix2d import zero_matrix_vector, elementwise_dot_product
from numpy.matlib import zeros

#%%
# Create Panel Mesh
jsonfilepath = '../files/Prandtl-D2.json'
psys = panelsystem_from_json(jsonfilepath)
display_markdown(psys)

#%%
# System Plots
axt1 = psys.plot_twist_distribution()
_ = axt1.set_ylabel('Twist (deg)')
_ = axt1.set_xlabel('Span-Wise Coordinate - b (m)')
axt2 = psys.plot_tilt_distribution()
_ = axt2.set_ylabel('Tilt (deg)')
_ = axt2.set_xlabel('Span-Wise Coordinate - b (m)')
axt = psys.plot_chord_distribution()
_ = axt.set_ylabel('Chord (m)')
_ = axt.set_xlabel('Span-Wise Coordinate - b (m)')
# axw = psys.plot_strip_width_distribution()
# _ = axw.set_ylabel('Strip Width (m)')
# _ = axw.set_xlabel('Span-Wise Coordinate - b (m)')
Пример #31
0
 def _dmf_markdown(text):
     display_markdown(text, raw=True)
Пример #32
0
#%%
# Load Dependencies
from IPython.display import display_markdown
from pyapm import panelsystem_from_json
from pyapm.outputs.msh import panelresult_to_msh
from pyvlm import latticesystem_from_json

#%%
# Create Panel System
jsonfilepath = '../files/Test_straight.json'
psys = panelsystem_from_json(jsonfilepath)
display_markdown(psys)

#%%
# Create Lattice System
jsonfilepath = '../files/Test_straight.json'
lsys = latticesystem_from_json(jsonfilepath)
display_markdown(lsys)

#%%
# Panel Result
pres = psys.results['Test Alpha']
display_markdown(pres)

#%%
# Lattice Result Result
lres = lsys.results['Test Alpha']
display_markdown(lres)

#%%
# Plot Lift Distribution
Пример #33
0
#%%
# Import Dependencies
from IPython.display import display_markdown
from pyapm import panelsystem_from_json
from pyapm.outputs.msh import panelresult_to_msh

#%%
# Import Geometry
jsonfilepath = '../files/Aircraft.json'
psys = panelsystem_from_json(jsonfilepath)

#%%
# Display System
display_markdown(psys)

#%%
# Display Results
for case in psys.results:
    pres = psys.results[case]
    display_markdown(pres)

#%%
# Mesh File Output
ptrm = psys.results['Positive 1g Cruise']
panelresult_to_msh(ptrm, '../results/Aircraft.msh')
display_markdown(ptrm)

#%%
# Deflect Elevator
pres = ptrm.to_result('Positive 1g Cruise + Controls 25 deg')
pres.set_controls(elevator=25.0, aileron=25.0, rudder=25.0)