Пример #1
0
from spectral import imshow
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
import matplotlib.patches as patches



def make_hparam_string(patch_size):
    return "ps%d" % patch_size


# Input data
print("------------------------")
print("Input data")
print("------------------------")
input = IndianPines_Input.IndianPines_Input()
print("Training pixels", np.count_nonzero(input.train_data))
print("Test pixels", np.count_nonzero(input.test_data))
print("------------------------")


# Configurable parameters
config = {}
config['in_channels'] = input.bands
config['num_classes'] = input.num_classes
config['patch_size'] = 5
config['kernel_size'] = 3
config['conv1_channels'] = 32
config['conv2_channels'] = 64
config['fc1_units'] = 1024
config['batch_size'] = 16
Пример #2
0
from Flevoland import Flevoland_Input
from SanFrancisco import SanFrancisco_Input
from Salinas import Salinas_Input
import time
import numpy as np
from collections import Counter
from spectral import imshow, save_rgb
import CV_Decoder, CV_Postprocessing
import os
import pandas as pd
import CNNTrain_2D

# Input data
images = ["IndianPines", "Pavia", "Flevoland", "SanFrancisco", "Salinas"]
images_inputs = {
    "IndianPines": IndianPines_Input.IndianPines_Input(),
    "Pavia": Pavia_Input.Pavia_Input(),
    "Flevoland": Flevoland_Input.Flevoland_Input(),
    "SanFrancisco": SanFrancisco_Input.SanFrancisco_Input(),
    "Salinas": Salinas_Input.Salinas_Input()
}

# Select image to test
selected_img = images[3]
input = images_inputs[selected_img]

print("Image:" + selected_img)

for patch_size in [5]:

    config = {}