Пример #1
0
class LinearHybrid003(BaseItemSimilarityMatrixRecommender):
    RECOMMENDER_NAME = "LinearHybrid003"

    # set the seed equal to the one of the parameter search!!!!
    def __init__(self,
                 URM_train,
                 ICM_train,
                 submission=False,
                 verbose=True,
                 seed=1205):
        super(LinearHybrid003, self).__init__(URM_train, verbose=verbose)
        self.URM_train = URM_train
        self.ICM_train = ICM_train

        # seed 1205: 'topK': 190, 'shrink': 0, 'similarity': 'cosine', 'normalize': True
        self.__rec1 = UserKNNCFRecommender(URM_train, verbose=False)
        self.__rec1_params = {
            'topK': 190,
            'shrink': 0,
            'similarity': 'cosine',
            'normalize': True
        }

        self.__rec2 = P3alphaRecommender(URM_train, verbose=False)
        self.__rec2_params = {
            'topK': 131,
            'alpha': 0.33660811631883863,
            'normalize_similarity': False
        }

        # seed 1205: 'topK': 205, 'shrink': 1000, 'similarity': 'cosine', 'normalize': True, 'feature_weighting': 'BM25'
        self.__rec3 = ItemKNNCBFRecommender(URM_train,
                                            ICM_train,
                                            verbose=False)
        self.__rec3_params = {
            'topK': 205,
            'shrink': 1000,
            'similarity': 'cosine',
            'normalize': True,
            'feature_weighting': 'BM25'
        }

        self.__a = self.__b = self.__c = None
        self.seed = seed
        self.__submission = submission

    def fit(self, alpha=0.5, l1_ratio=0.5):
        self.__a = alpha * l1_ratio
        self.__b = alpha - self.__a
        self.__c = 1 - self.__a - self.__b
        if not self.__submission:
            try:
                self.__rec1.load_model(
                    f'stored_recommenders/seed_{str(self.seed)}_{self.__rec1.RECOMMENDER_NAME}/',
                    f'best_for_{self.RECOMMENDER_NAME}')
                print(f"{self.__rec1.RECOMMENDER_NAME} loaded.")
            except:
                print(f"Fitting {self.__rec1.RECOMMENDER_NAME} ...")
                self.__rec1.fit(**self.__rec1_params)
                print(f"done.")
                self.__rec1.save_model(
                    f'stored_recommenders/seed_{str(self.seed)}_{self.__rec1.RECOMMENDER_NAME}/',
                    f'best_for_{self.RECOMMENDER_NAME}')

            try:
                self.__rec2.load_model(
                    f'stored_recommenders/seed_{str(self.seed)}_{self.__rec2.RECOMMENDER_NAME}/',
                    f'best_for_{self.RECOMMENDER_NAME}')
                print(f"{self.__rec2.RECOMMENDER_NAME} loaded.")
            except:
                print(f"Fitting {self.__rec2.RECOMMENDER_NAME} ...")
                self.__rec2.fit(**self.__rec2_params)
                print(f"done.")
                self.__rec2.save_model(
                    f'stored_recommenders/seed_{str(self.seed)}_{self.__rec2.RECOMMENDER_NAME}/',
                    f'best_for_{self.RECOMMENDER_NAME}')

            try:
                self.__rec3.load_model(
                    f'stored_recommenders/seed_{str(self.seed)}_{self.__rec3.RECOMMENDER_NAME}/',
                    f'best_for_{self.RECOMMENDER_NAME}')
                print(f"{self.__rec3.RECOMMENDER_NAME} loaded.")
            except:
                print(f"Fitting {self.__rec3.RECOMMENDER_NAME} ...")
                self.__rec3.fit(**self.__rec3_params)
                print(f"done.")
                self.__rec3.save_model(
                    f'stored_recommenders/seed_{str(self.seed)}_{self.__rec3.RECOMMENDER_NAME}/',
                    f'best_for_{self.RECOMMENDER_NAME}')
        else:
            self.__rec1.fit(**self.__rec1_params)
            self.__rec2.fit(**self.__rec2_params)
            self.__rec3.fit(**self.__rec3_params)

    def _compute_item_score(self, user_id_array, items_to_compute=None):

        item_weights_1 = self.__rec1._compute_item_score(user_id_array)
        item_weights_2 = self.__rec2._compute_item_score(user_id_array)
        item_weights_3 = self.__rec3._compute_item_score(user_id_array)

        item_weights = item_weights_1 * self.__a + item_weights_2 * self.__b + item_weights_3 * self.__c

        return item_weights

    def save_model(self, folder_path, file_name=None):
        if file_name is None:
            file_name = self.RECOMMENDER_NAME
        self._print("Saving model in file '{}'".format(folder_path +
                                                       file_name))
        dataIO = DataIO(folder_path=folder_path)
        dataIO.save_data(file_name=file_name, data_dict_to_save={})
        self._print("Saving complete")
Пример #2
0
        print(f"Fitting {ucf.RECOMMENDER_NAME} ...")
        ucf.fit(**ucf_params)
        print(f"done.")
        ucf.save_model(f'stored_recommenders/seed_{str(seed)}_{ucf.RECOMMENDER_NAME}/', 'for_notebook_analysis')

    icb = ItemKNNCBFRecommender(URM_train, ICM_all, verbose=False)

    icb_params = {'topK': 65, 'shrink': 0, 'similarity': 'dice', 'normalize': True}
    try:
        icb.load_model(f'stored_recommenders/seed_{str(seed)}_{icb.RECOMMENDER_NAME}/', 'for_notebook_analysis')
        print(f"{icb.RECOMMENDER_NAME} loaded.")
    except:
        print(f"Fitting {icb.RECOMMENDER_NAME} ...")
        icb.fit(**icb_params)
        print(f"done.")
        icb.save_model(f'stored_recommenders/seed_{str(seed)}_{icb.RECOMMENDER_NAME}/', 'for_notebook_analysis')

    list_recommender = [sslim, icb, ucf]
    best_recommender = HybridCombinationSearch(URM_train, ICM_all, list_recommender)
    params = {'alpha': 0.6461624491197696, 'l1_ratio': 0.7617220099582368}
    best_recommender.fit(**params)

    user_ids = parser.get_ratings().user_id.unique()
    cutoff = 20
    user_recommendations_items = []
    user_recommendations_user_id = []
    target = []

    for n_user in user_ids:
        recommendations = best_recommender.recommend(n_user, cutoff=20)
        user_recommendations_items.extend(recommendations)
Пример #3
0
class PipeHybrid001(RP3betaRecommender):
    RECOMMENDER_NAME = "PipeHybrid001"

    def __init__(self, URM_train, ICM_train,verbose=True):
        super(PipeHybrid001, self).__init__(URM_train, verbose = verbose)
        self.URM_train_recommendation = URM_train
        self.ICM_train = ICM_train
        self.__content_recommender = ItemKNNCBFRecommender(URM_train, ICM_train)
        #print("fitting ItemKNNCBF...")
        try:
            self.__content_recommender.load_model('stored_recommenders/ItemKNNCBFRecommender/best_at_26_10_20')
        except:
            self.__content_recommender.fit(topK=140, shrink=1000, similarity='cosine', normalize=True,
                                           feature_weighting='BM25')  # best parameter up to now
            self.__content_recommender.save_model('stored_recommenders/ItemKNNCBFRecommender/best_at_26_10_20')

        #print("... done")

        #print(f"URM_train shape: {URM_train.shape}")
        #print(f"W_sparse knn shape: {self.__content_recommender.W_sparse.shape}")

        self.URM_train = URM_train.dot(self.__content_recommender.W_sparse)
        self._URM_train_format_checked = False
        self._W_sparse_format_checked = False

    def recommend(self, user_id_array, cutoff = None, remove_seen_flag=True, items_to_compute = None,
                  remove_top_pop_flag = False, remove_custom_items_flag = False, return_scores = False):
        """
        redefinition using self.URM_train_recommendation, not the new URM train of the RP3Beta algorithm
        """
        # If is a scalar transform it in a 1-cell array
        if np.isscalar(user_id_array):
            user_id_array = np.atleast_1d(user_id_array)
            single_user = True
        else:
            single_user = False

        if cutoff is None:
            cutoff = self.URM_train_recommendation.shape[1] - 1

        # Compute the scores using the model-specific function
        # Vectorize over all users in user_id_array
        scores_batch = self._compute_item_score(user_id_array, items_to_compute=items_to_compute)


        for user_index in range(len(user_id_array)):

            user_id = user_id_array[user_index]

            if remove_seen_flag:
                scores_batch[user_index,:] = self._remove_seen_on_scores(user_id, scores_batch[user_index, :])

            # Sorting is done in three steps. Faster then plain np.argsort for higher number of items
            # - Partition the data to extract the set of relevant items
            # - Sort only the relevant items
            # - Get the original item index
            # relevant_items_partition = (-scores_user).argpartition(cutoff)[0:cutoff]
            # relevant_items_partition_sorting = np.argsort(-scores_user[relevant_items_partition])
            # ranking = relevant_items_partition[relevant_items_partition_sorting]
            #
            # ranking_list.append(ranking)

        if remove_top_pop_flag:
            scores_batch = self._remove_TopPop_on_scores(scores_batch)

        if remove_custom_items_flag:
            scores_batch = self._remove_custom_items_on_scores(scores_batch)

        # relevant_items_partition is block_size x cutoff
        relevant_items_partition = (-scores_batch).argpartition(cutoff, axis=1)[:,0:cutoff]

        # Get original value and sort it
        # [:, None] adds 1 dimension to the array, from (block_size,) to (block_size,1)
        # This is done to correctly get scores_batch value as [row, relevant_items_partition[row,:]]
        relevant_items_partition_original_value = scores_batch[np.arange(scores_batch.shape[0])[:, None], relevant_items_partition]
        relevant_items_partition_sorting = np.argsort(-relevant_items_partition_original_value, axis=1)
        ranking = relevant_items_partition[np.arange(relevant_items_partition.shape[0])[:, None], relevant_items_partition_sorting]

        ranking_list = [None] * ranking.shape[0]

        # Remove from the recommendation list any item that has a -inf score
        # Since -inf is a flag to indicate an item to remove
        for user_index in range(len(user_id_array)):
            user_recommendation_list = ranking[user_index]
            user_item_scores = scores_batch[user_index, user_recommendation_list]

            not_inf_scores_mask = np.logical_not(np.isinf(user_item_scores))

            user_recommendation_list = user_recommendation_list[not_inf_scores_mask]
            ranking_list[user_index] = user_recommendation_list.tolist()

            #TEST
            """
            user_profile_array = self.URM_train[user_id_array[user_index]]
            if np.empty(user_profile_array):
                print(f"WARNING! {user_index} is a cold user!")
                rec = TopPop(URM_train)
                rec.fit()
                ranking_list[user_index]=rec.recommend([user_id_array[user_index]], cutoff=cutoff)
            """


        # Return single list for one user, instead of list of lists
        if single_user:
            ranking_list = ranking_list[0]

        if return_scores:
            return ranking_list, scores_batch

        else:
            return ranking_list
Пример #4
0
class LinearHybridC001(BaseItemSimilarityMatrixRecommender):
    RECOMMENDER_NAME = "LinearHybridC001"
    """
    This hybrid works for users who have a profile length shorter or equal to 2 interactions
    """

    # set the seed equal to the one of the parameter search!!!!
    def __init__(self,
                 URM_train,
                 ICM_train,
                 submission=False,
                 verbose=True,
                 seed=1205):
        super(LinearHybridC001, self).__init__(URM_train, verbose=verbose)
        self.URM_train = URM_train
        self.ICM_train = ICM_train

        # seed 1205: {'num_factors': 83, 'confidence_scaling': 'linear', 'alpha': 28.4278070726612, 'epsilon':
        # 1.0234211788885077, 'reg': 0.0027328110246575004, 'epochs': 20}
        self.__rec1 = IALSRecommender(URM_train, verbose=False)
        self.__rec1_params = {
            'num_factors': 83,
            'confidence_scaling': 'linear',
            'alpha': 28.4278070726612,
            'epsilon': 1.0234211788885077,
            'reg': 0.0027328110246575004,
            'epochs': 15
        }  #### -5!!

        # seed 1205: {'topK': 225, 'shrink': 1000, 'similarity': 'cosine', 'normalize': True, 'feature_weighting':
        # 'BM25'}
        self.__rec2 = ItemKNNCBFRecommender(URM_train,
                                            ICM_train,
                                            verbose=False)
        self.__rec2_params = {
            'topK': 225,
            'shrink': 1000,
            'similarity': 'cosine',
            'normalize': True,
            'feature_weighting': 'BM25'
        }

        # seed 1205: {'topK': 220, 'shrink': 175, 'similarity': 'cosine', 'normalize': False}
        self.__rec3 = ItemKNNCFRecommender(URM_train, verbose=False)
        self.__rec3_params = {
            'topK': 220,
            'shrink': 175,
            'similarity': 'cosine',
            'normalize': False
        }

        self.__a = self.__b = self.__c = None
        self.seed = seed
        self.__submission = submission

    def fit(self, alpha=0.5, l1_ratio=0.5):
        self.__a = alpha * l1_ratio
        self.__b = alpha - self.__a
        self.__c = 1 - self.__a - self.__b
        if not self.__submission:
            try:
                self.__rec1.load_model(
                    f'stored_recommenders/seed_{str(self.seed)}_{self.__rec1.RECOMMENDER_NAME}/',
                    f'best_for_{self.RECOMMENDER_NAME}')
                print(f"{self.__rec1.RECOMMENDER_NAME} loaded.")
            except:
                print(f"Fitting {self.__rec1.RECOMMENDER_NAME} ...")
                self.__rec1.fit(**self.__rec1_params)
                print(f"done.")
                self.__rec1.save_model(
                    f'stored_recommenders/seed_{str(self.seed)}_{self.__rec1.RECOMMENDER_NAME}/',
                    f'best_for_{self.RECOMMENDER_NAME}')

            try:
                self.__rec2.load_model(
                    f'stored_recommenders/seed_{str(self.seed)}_{self.__rec2.RECOMMENDER_NAME}/',
                    f'best_for_{self.RECOMMENDER_NAME}')
                print(f"{self.__rec2.RECOMMENDER_NAME} loaded.")
            except:
                print(f"Fitting {self.__rec2.RECOMMENDER_NAME} ...")
                self.__rec2.fit(**self.__rec2_params)
                print(f"done.")
                self.__rec2.save_model(
                    f'stored_recommenders/seed_{str(self.seed)}_{self.__rec2.RECOMMENDER_NAME}/',
                    f'best_for_{self.RECOMMENDER_NAME}')

            try:
                self.__rec3.load_model(
                    f'stored_recommenders/seed_{str(self.seed)}_{self.__rec3.RECOMMENDER_NAME}/',
                    f'best_for_{self.RECOMMENDER_NAME}')
                print(f"{self.__rec3.RECOMMENDER_NAME} loaded.")
            except:
                print(f"Fitting {self.__rec3.RECOMMENDER_NAME} ...")
                self.__rec3.fit(**self.__rec3_params)
                print(f"done.")
                self.__rec3.save_model(
                    f'stored_recommenders/seed_{str(self.seed)}_{self.__rec3.RECOMMENDER_NAME}/',
                    f'best_for_{self.RECOMMENDER_NAME}')
        else:
            self.__rec1.fit(**self.__rec1_params)
            self.__rec2.fit(**self.__rec2_params)
            self.__rec3.fit(**self.__rec3_params)

    def _compute_item_score(self, user_id_array, items_to_compute=None):

        item_weights_1 = self.__rec1._compute_item_score(user_id_array)
        item_weights_2 = self.__rec2._compute_item_score(user_id_array)
        item_weights_3 = self.__rec3._compute_item_score(user_id_array)

        item_weights = item_weights_1 * self.__a + item_weights_2 * self.__b + item_weights_3 * self.__c

        return item_weights

    def save_model(self, folder_path, file_name=None):
        if file_name is None:
            file_name = self.RECOMMENDER_NAME
        self._print("Saving model in file '{}'".format(folder_path +
                                                       file_name))
        dataIO = DataIO(folder_path=folder_path)
        dataIO.save_data(file_name=file_name, data_dict_to_save={})
        self._print("Saving complete")
Пример #5
0
class LinearHybrid008(BaseItemSimilarityMatrixRecommender):
    RECOMMENDER_NAME = "LinearHybrid008"

    # set the seed equal to the one of the parameter search!!!!
    def __init__(self,
                 URM_train,
                 ICM_train,
                 submission=False,
                 verbose=True,
                 seed=1205):
        super(LinearHybrid008, self).__init__(URM_train, verbose=verbose)
        self.URM_train = URM_train
        self.ICM_train = ICM_train

        self.__rec1 = SSLIMElasticNet(URM_train, ICM_train, verbose=False)
        self.__rec1_params = {
            'beta': 0.4849594591575789,
            'topK': 1000,
            'l1_ratio': 1e-05,
            'alpha': 0.001
        }

        self.__rec2 = ItemKNNCBFRecommender(URM_train,
                                            ICM_train,
                                            verbose=False)
        self.__rec2_params = {
            'topK': 65,
            'shrink': 0,
            'similarity': 'dice',
            'normalize': True
        }

        self.__rec3 = UserKNNCFRecommender(URM_train, verbose=False)
        self.__rec3_params = {
            'topK': 190,
            'shrink': 0,
            'similarity': 'cosine',
            'normalize': True
        }

        self.__a = self.__b = self.__c = None
        self.seed = seed
        self.__submission = submission

    def fit(self, alpha=0.5, l1_ratio=0.5):
        self.__a = alpha * l1_ratio
        self.__b = alpha - self.__a
        self.__c = 1 - self.__a - self.__b
        if not self.__submission:
            try:
                self.__rec1.load_model(
                    f'stored_recommenders/seed_{str(self.seed)}_{self.__rec1.RECOMMENDER_NAME}/',
                    f'best_for_{self.RECOMMENDER_NAME}')
                print(f"{self.__rec1.RECOMMENDER_NAME} loaded.")
            except:
                print(f"Fitting {self.__rec1.RECOMMENDER_NAME} ...")
                self.__rec1.fit(**self.__rec1_params)
                print(f"done.")
                self.__rec1.save_model(
                    f'stored_recommenders/seed_{str(self.seed)}_{self.__rec1.RECOMMENDER_NAME}/',
                    f'best_for_{self.RECOMMENDER_NAME}')

            try:
                self.__rec2.load_model(
                    f'stored_recommenders/seed_{str(self.seed)}_{self.__rec2.RECOMMENDER_NAME}/',
                    f'best_for_{self.RECOMMENDER_NAME}')
                print(f"{self.__rec2.RECOMMENDER_NAME} loaded.")
            except:
                print(f"Fitting {self.__rec2.RECOMMENDER_NAME} ...")
                self.__rec2.fit(**self.__rec2_params)
                print(f"done.")
                self.__rec2.save_model(
                    f'stored_recommenders/seed_{str(self.seed)}_{self.__rec2.RECOMMENDER_NAME}/',
                    f'best_for_{self.RECOMMENDER_NAME}')

            try:
                self.__rec3.load_model(
                    f'stored_recommenders/seed_{str(self.seed)}_{self.__rec3.RECOMMENDER_NAME}/',
                    f'best_for_{self.RECOMMENDER_NAME}')
                print(f"{self.__rec3.RECOMMENDER_NAME} loaded.")
            except:
                print(f"Fitting {self.__rec3.RECOMMENDER_NAME} ...")
                self.__rec3.fit(**self.__rec3_params)
                print(f"done.")
                self.__rec3.save_model(
                    f'stored_recommenders/seed_{str(self.seed)}_{self.__rec3.RECOMMENDER_NAME}/',
                    f'best_for_{self.RECOMMENDER_NAME}')
        else:
            self.__rec1.fit(**self.__rec1_params)
            self.__rec2.fit(**self.__rec2_params)
            self.__rec3.fit(**self.__rec3_params)

    def _compute_item_score(self, user_id_array, items_to_compute=None):

        item_weights_1 = self.__rec1._compute_item_score(user_id_array)
        item_weights_2 = self.__rec2._compute_item_score(user_id_array)
        item_weights_3 = self.__rec3._compute_item_score(user_id_array)

        # normalization
        item_weights_1_max = item_weights_1.max()
        item_weights_2_max = item_weights_2.max()
        item_weights_3_max = item_weights_3.max()

        if not item_weights_1_max == 0:
            item_weights_1 /= item_weights_1_max
        if not item_weights_2_max == 0:
            item_weights_2 /= item_weights_2_max
        if not item_weights_3_max == 0:
            item_weights_3 /= item_weights_3_max

        item_weights = item_weights_1 * self.__a + item_weights_2 * self.__b + item_weights_3 * self.__c

        return item_weights

    def save_model(self, folder_path, file_name=None):
        if file_name is None:
            file_name = self.RECOMMENDER_NAME
        self._print("Saving model in file '{}'".format(folder_path +
                                                       file_name))
        dataIO = DataIO(folder_path=folder_path)
        dataIO.save_data(file_name=file_name, data_dict_to_save={})
        self._print("Saving complete")
Пример #6
0
    def __init__(self,
                 URM_train,
                 ICM_train,
                 submission=False,
                 verbose=True,
                 seed=1205):
        super(LinearOverMerged001, self).__init__(URM_train, verbose=verbose)
        self.URM_train = URM_train
        self.ICM_train = ICM_train
        self.__submission = submission
        self.__rec1 = UserKNNCFRecommender(URM_train, verbose=False)
        self.__rec1_params = {
            'topK': 190,
            'shrink': 0,
            'similarity': 'cosine',
            'normalize': True
        }
        self.seed = seed

        icb = ItemKNNCBFRecommender(URM_train, ICM_train, verbose=False)
        icb_params = {
            'topK': 65,
            'shrink': 0,
            'similarity': 'dice',
            'normalize': True
        }
        rp3b = RP3betaRecommender(URM_train, verbose=False)
        rp3b_params = {
            'topK': 1000,
            'alpha': 0.38192761611274967,
            'beta': 0.0,
            'normalize_similarity': False
        }
        sen = SLIMElasticNetRecommender(URM_train, verbose=False)
        sen_params = {
            'topK': 992,
            'l1_ratio': 0.004065081925341167,
            'alpha': 0.003725005053334143
        }

        if not self.__submission:
            try:
                icb.load_model(
                    f'stored_recommenders/seed_{str(self.seed)}_{icb.RECOMMENDER_NAME}/',
                    f'best_for_{self.RECOMMENDER_NAME}')
                print(f"{icb.RECOMMENDER_NAME} loaded.")
            except:
                print(f"Fitting {icb.RECOMMENDER_NAME} ...")
                icb.fit(**icb_params)
                print(f"done.")
                icb.save_model(
                    f'stored_recommenders/seed_{str(self.seed)}_{icb.RECOMMENDER_NAME}/',
                    f'best_for_{self.RECOMMENDER_NAME}')
            try:
                rp3b.load_model(
                    f'stored_recommenders/seed_{str(self.seed)}_{rp3b.RECOMMENDER_NAME}/',
                    f'best_for_{self.RECOMMENDER_NAME}')
                print(f"{rp3b.RECOMMENDER_NAME} loaded.")
            except:
                print(f"Fitting {rp3b.RECOMMENDER_NAME} ...")
                rp3b.fit(**rp3b_params)
                print(f"done.")
                rp3b.save_model(
                    f'stored_recommenders/seed_{str(self.seed)}_{rp3b.RECOMMENDER_NAME}/',
                    f'best_for_{self.RECOMMENDER_NAME}')
            try:
                sen.load_model(
                    f'stored_recommenders/seed_{str(self.seed)}_{sen.RECOMMENDER_NAME}/',
                    f'best_for_{self.RECOMMENDER_NAME}')
                print(f"{sen.RECOMMENDER_NAME} loaded.")
            except:
                print(f"Fitting {sen.RECOMMENDER_NAME} ...")
                sen.fit(**sen_params)
                print(f"done.")
                sen.save_model(
                    f'stored_recommenders/seed_{str(self.seed)}_{sen.RECOMMENDER_NAME}/',
                    f'best_for_{self.RECOMMENDER_NAME}')
        else:
            icb.fit(**icb_params)
            rp3b.fit(**rp3b_params)
            sen.fit(**sen_params)

        self.__rec2 = HiddenMergedRecommender(URM_train,
                                              ICM_train, [icb, rp3b, sen],
                                              verbose=False)
        self.__rec2_params = {
            'alpha': 0.6355738550417837,
            'l1_ratio': 0.6617849709204384,
            'topK': 538
        }

        self.__a = self.__b = None
Пример #7
0
class LinearHybridW001(BaseItemSimilarityMatrixRecommender):
    RECOMMENDER_NAME = "LinearHybridW001"
    """
    This hybrid works for users who have a profile length greater than or equal to 3 interactions
    """

    # set the seed equal to the one of the parameter search!!!!
    def __init__(self, URM_train, ICM_train, submission=False, verbose=True, seed=1205):
        super(LinearHybridW001, self).__init__(URM_train, verbose=verbose)
        self.URM_train = URM_train
        self.ICM_train = ICM_train

        # seed 1205: {'topK': 205, 'shrink': 1000, 'similarity': 'cosine',
        #             'normalize': True, 'feature_weighting': 'BM25'}
        self.__rec1 = ItemKNNCBFRecommender(URM_train,ICM_train, verbose=False)
        self.__rec1_params = {'topK': 205, 'shrink': 1000, 'similarity': 'cosine', 'normalize': True,
                              'feature_weighting': 'BM25'}

        # seed 1205: {'topK': 565, 'shrink': 554, 'similarity': 'tversky', 'normalize': True,
        #             'tversky_alpha': 1.9109121434662428, 'tversky_beta': 1.7823834698905734}
        self.__rec2 = ItemKNNCFRecommender(URM_train, verbose=False)
        self.__rec2_params = {'topK': 565, 'shrink': 554, 'similarity': 'tversky', 'normalize': True,
                              'tversky_alpha': 1.9109121434662428, 'tversky_beta': 1.7823834698905734}

        # seed 1205: {'topK': 753, 'alpha': 0.3873710051288722, 'beta': 0.0, 'normalize_similarity': False}
        self.__rec3 = RP3betaRecommender(URM_train, verbose=False)
        self.__rec3_params = {'topK': 753, 'alpha': 0.3873710051288722, 'beta': 0.0, 'normalize_similarity': False}

        self.__a = self.__b = self.__c = None
        self.seed = seed
        self.__submission = submission

    def fit(self, alpha=0.5, l1_ratio=0.5):
        self.__a = alpha * l1_ratio
        self.__b = alpha - self.__a
        self.__c = 1 - self.__a - self.__b
        if not self.__submission:
            try:
                self.__rec1.load_model(f'stored_recommenders/seed_{str(self.seed)}_{self.__rec1.RECOMMENDER_NAME}/',
                                       f'best_for_{self.RECOMMENDER_NAME}')
                print(f"{self.__rec1.RECOMMENDER_NAME} loaded.")
            except:
                print(f"Fitting {self.__rec1.RECOMMENDER_NAME} ...")
                self.__rec1.fit(**self.__rec1_params)
                print(f"done.")
                self.__rec1.save_model(f'stored_recommenders/seed_{str(self.seed)}_{self.__rec1.RECOMMENDER_NAME}/',
                                       f'best_for_{self.RECOMMENDER_NAME}')

            try:
                self.__rec2.load_model(f'stored_recommenders/seed_{str(self.seed)}_{self.__rec2.RECOMMENDER_NAME}/',
                                       f'best_for_{self.RECOMMENDER_NAME}')
                print(f"{self.__rec2.RECOMMENDER_NAME} loaded.")
            except:
                print(f"Fitting {self.__rec2.RECOMMENDER_NAME} ...")
                self.__rec2.fit(**self.__rec2_params)
                print(f"done.")
                self.__rec2.save_model(f'stored_recommenders/seed_{str(self.seed)}_{self.__rec2.RECOMMENDER_NAME}/',
                                       f'best_for_{self.RECOMMENDER_NAME}')

            try:
                self.__rec3.load_model(f'stored_recommenders/seed_{str(self.seed)}_{self.__rec3.RECOMMENDER_NAME}/',
                                       f'best_for_{self.RECOMMENDER_NAME}')
                print(f"{self.__rec3.RECOMMENDER_NAME} loaded.")
            except:
                print(f"Fitting {self.__rec3.RECOMMENDER_NAME} ...")
                self.__rec3.fit(**self.__rec3_params)
                print(f"done.")
                self.__rec3.save_model(f'stored_recommenders/seed_{str(self.seed)}_{self.__rec3.RECOMMENDER_NAME}/',
                                       f'best_for_{self.RECOMMENDER_NAME}')
        else:
            self.__rec1.fit(**self.__rec1_params)
            self.__rec2.fit(**self.__rec2_params)
            self.__rec3.fit(**self.__rec3_params)

    def _compute_item_score(self, user_id_array, items_to_compute=None):

        item_weights_1 = self.__rec1._compute_item_score(user_id_array)
        item_weights_2 = self.__rec2._compute_item_score(user_id_array)
        item_weights_3 = self.__rec3._compute_item_score(user_id_array)

        item_weights = item_weights_1 * self.__a + item_weights_2 * self.__b + item_weights_3 * self.__c

        return item_weights

    def save_model(self, folder_path, file_name=None):
        if file_name is None:
            file_name = self.RECOMMENDER_NAME
        self._print("Saving model in file '{}'".format(folder_path + file_name))
        dataIO = DataIO(folder_path=folder_path)
        dataIO.save_data(file_name=file_name, data_dict_to_save={})
        self._print("Saving complete")
def read_data_split_and_search():
    """
    This function provides a simple example on how to tune parameters of a given algorithm

    The BayesianSearch object will save:
        - A .txt file with all the cases explored and the recommendation quality
        - A _best_model file which contains the trained model and can be loaded with recommender.load_model()
        - A _best_parameter file which contains a dictionary with all the fit parameters, it can be passed to recommender.fit(**_best_parameter)
        - A _best_result_validation file which contains a dictionary with the results of the best solution on the validation
        - A _best_result_test file which contains a dictionary with the results, on the test set, of the best solution chosen using the validation set
    """

    seed = 1205
    parser = DataParser()

    URM_all = parser.get_URM_all()
    ICM_obj = parser.get_ICM_all()

    # SPLIT TO GET TEST PARTITION
    URM_train, URM_test = split_train_in_two_percentage_global_sample(URM_all, train_percentage=0.90, seed=seed)

    # SPLIT TO GET THE HYBRID VALID PARTITION
    URM_train, URM_valid_hybrid = split_train_in_two_percentage_global_sample(URM_train, train_percentage=0.85,
                                                                              seed=seed)

    collaborative_algorithm_list = [
        # EASE_R_Recommender
        # PipeHybrid001,
        # Random,
        # TopPop,
        # P3alphaRecommender,
        # RP3betaRecommender,
        # ItemKNNCFRecommender,
        # UserKNNCFRecommender,
        # MatrixFactorization_BPR_Cython,
        # MatrixFactorization_FunkSVD_Cython,
        # PureSVDRecommender,
        # NMFRecommender,
        # PureSVDItemRecommender
        # SLIM_BPR_Cython,
        # SLIMElasticNetRecommender
        # IALSRecommender
        # MF_MSE_PyTorch
        # MergedHybrid000
        # LinearHybrid002ggg
        HybridCombinationSearch
    ]

    content_algorithm_list = [
        # ItemKNNCBFRecommender
    ]

    from Base.Evaluation.Evaluator import EvaluatorHoldout

    evaluator_valid_hybrid = EvaluatorHoldout(URM_valid_hybrid, cutoff_list=[10])
    evaluator_test = EvaluatorHoldout(URM_test, cutoff_list=[10])

    """
    earlystopping_keywargs = {"validation_every_n": 5,
                              "stop_on_validation": True,
                              "evaluator_object": evaluator_valid_hybrid,
                              "lower_validations_allowed": 5,
                              "validation_metric": 'MAP',
                              }

    print('IALS training...')
    ials = IALSRecommender(URM_train, verbose=False)
    ials_params = {'num_factors': 83, 'confidence_scaling': 'linear', 'alpha': 28.4278070726612,
                   'epsilon': 1.0234211788885077, 'reg': 0.0027328110246575004, 'epochs': 20}
    ials.fit(**ials_params, **earlystopping_keywargs)
    print("Done")


    print("PureSVD training...")
    psvd = PureSVDRecommender(URM_train, verbose=False)
    psvd_params = {'num_factors': 711}
    psvd.fit(**psvd_params)
    print("Done")
    """

    rp3b = RP3betaRecommender(URM_train, verbose=False)
    rp3b_params = {'topK': 1000, 'alpha': 0.38192761611274967, 'beta': 0.0, 'normalize_similarity': False}
    try:
        rp3b.load_model(f'stored_recommenders/seed_{str(seed)}_hybrid_search/',
                        f'{rp3b.RECOMMENDER_NAME}_for_second_search')
        print(f"{rp3b.RECOMMENDER_NAME} loaded.")
    except:
        print(f"Fitting {rp3b.RECOMMENDER_NAME} ...")
        rp3b.fit(**rp3b_params)
        print(f"done.")
        rp3b.save_model(f'stored_recommenders/seed_{str(seed)}_hybrid_search/',
                        f'{rp3b.RECOMMENDER_NAME}_for_second_search')

    p3a = P3alphaRecommender(URM_train, verbose=False)
    p3a_params = {'topK': 131, 'alpha': 0.33660811631883863, 'normalize_similarity': False}
    try:
        p3a.load_model(f'stored_recommenders/seed_{str(seed)}_hybrid_search/',
                       f'{p3a.RECOMMENDER_NAME}_for_second_search')
        print(f"{p3a.RECOMMENDER_NAME} loaded.")
    except:
        print(f"Fitting {p3a.RECOMMENDER_NAME} ...")
        p3a.fit(**p3a_params)
        print(f"done.")
        p3a.save_model(f'stored_recommenders/seed_{str(seed)}_hybrid_search/',
                       f'{p3a.RECOMMENDER_NAME}_for_second_search')

    icf = ItemKNNCFRecommender(URM_train, verbose=False)
    icf_params = {'topK': 55, 'shrink': 1000, 'similarity': 'asymmetric', 'normalize': True, 'asymmetric_alpha': 0.0}
    try:
        icf.load_model(f'stored_recommenders/seed_{str(seed)}_hybrid_search/',
                       f'{icf.RECOMMENDER_NAME}_for_second_search')
        print(f"{icf.RECOMMENDER_NAME} loaded.")
    except:
        print(f"Fitting {icf.RECOMMENDER_NAME} ...")
        icf.fit(**icf_params)
        print(f"done.")
        icf.save_model(f'stored_recommenders/seed_{str(seed)}_hybrid_search/',
                       f'{icf.RECOMMENDER_NAME}_for_second_search')

    ucf = UserKNNCFRecommender(URM_train, verbose=False)
    ucf_params = {'topK': 190, 'shrink': 0, 'similarity': 'cosine', 'normalize': True}
    try:
        ucf.load_model(f'stored_recommenders/seed_{str(seed)}_hybrid_search/',
                       f'{ucf.RECOMMENDER_NAME}_for_second_search')
        print(f"{ucf.RECOMMENDER_NAME} loaded.")
    except:
        print(f"Fitting {ucf.RECOMMENDER_NAME} ...")
        ucf.fit(**ucf_params)
        print(f"done.")
        ucf.save_model(f'stored_recommenders/seed_{str(seed)}_hybrid_search/',
                       f'{ucf.RECOMMENDER_NAME}_for_second_search')

    icb = ItemKNNCBFRecommender(URM_train, ICM_obj, verbose=False)
    icb_params = {'topK': 65, 'shrink': 0, 'similarity': 'dice', 'normalize': True}
    try:
        icb.load_model(f'stored_recommenders/seed_{str(seed)}_hybrid_search/',
                       f'{icb.RECOMMENDER_NAME}_for_second_search')
        print(f"{icb.RECOMMENDER_NAME} loaded.")
    except:
        print(f"Fitting {icf.RECOMMENDER_NAME} ...")
        icb.fit(**icb_params)
        print(f"done.")
        icb.save_model(f'stored_recommenders/seed_{str(seed)}_hybrid_search/',
                       f'{icb.RECOMMENDER_NAME}_for_second_search')

    sen = SLIMElasticNetRecommender(URM_train, verbose=False)
    sen_params = {'topK': 992, 'l1_ratio': 0.004065081925341167, 'alpha': 0.003725005053334143}
    try:
        sen.load_model(f'stored_recommenders/seed_{str(seed)}_hybrid_search/',
                       f'{sen.RECOMMENDER_NAME}_for_second_search')
        print(f"{sen.RECOMMENDER_NAME} loaded.")
    except:
        print(f"Fitting {sen.RECOMMENDER_NAME} ...")
        sen.fit(**sen_params)
        print(f"done.")
        sen.save_model(f'stored_recommenders/seed_{str(seed)}_hybrid_search/',
                       f'{sen.RECOMMENDER_NAME}_for_second_search')

    print("\nStart.")
    list_recommender = [icb, icf, ucf, p3a, rp3b, sen]
    list_already_seen = []
    combinations_already_seen = []
    """
    (icb, icf, p3a), (icb, icf, rp3b), (icb, icf, sen), (icb, p3a, rp3b), (icb, p3a, sen),
                                (icb, rp3b, sen), (icf, p3a, rp3b), (icf, p3a, sen)
    """

    for rec_perm in combinations(list_recommender, 3):

        if rec_perm not in combinations_already_seen:

            recommender_names = '_'.join([r.RECOMMENDER_NAME for r in rec_perm])
            output_folder_path = "result_experiments_v3/seed_" + str(
                seed) + '/linear_combination/' + recommender_names + '/'
            print(F"\nTESTING THE COMBO {recommender_names}")

            # If directory does not exist, create
            if not os.path.exists(output_folder_path):
                os.makedirs(output_folder_path)

            # TODO: setta I GIUSTI EVALUATOR QUI!!!!
            runParameterSearch_Collaborative_partial = partial(runParameterSearch_Collaborative,
                                                               URM_train=URM_train,
                                                               ICM_train=ICM_obj,
                                                               metric_to_optimize="MAP",
                                                               n_cases=50,
                                                               n_random_starts=20,
                                                               evaluator_validation_earlystopping=evaluator_valid_hybrid,
                                                               evaluator_validation=evaluator_valid_hybrid,
                                                               #evaluator_test=evaluator_test,
                                                               output_folder_path=output_folder_path,
                                                               allow_weighting=False,
                                                               # similarity_type_list = ["cosine", 'jaccard'],
                                                               parallelizeKNN=False,
                                                               list_rec=rec_perm)
            pool = multiprocessing.Pool(processes=int(multiprocessing.cpu_count()), maxtasksperchild=1)
            pool.map(runParameterSearch_Collaborative_partial, collaborative_algorithm_list)