epochs = 1000 lr = 0.1 goal_loss = 0.01 neurons_number = [35, 10] opt_name = "Adam" optimizer = Adam(lr=lr, decay=0.0001) draw_step = 10 verbose = 1 # 2 model and data initializing--------------------------------------------------------- (x_train, y_train), (x_test, y_test) = dataset5.load_data(train_size=train_size, show=False) x_train = np.transpose( np.append(x_train, np.ones(x_train.size)).reshape(2, x_train.size)) x_test = np.transpose( np.append(x_test, np.ones(x_test.size)).reshape(2, x_test.size)) model = Sequential() model.add(Dense(neurons_number[0], input_dim=2, activation='sigmoid')) model.add(Dense(neurons_number[1], activation='sigmoid')) model.add(Dense(1, activation='linear')) # 3 setting stopper--------------------------------------------------------- callbacks = [
import LABS.ZeroLab.E_Function as dataset5 from neupy import algorithms import matplotlib.pyplot as plt import numpy as np if __name__ == '__main__': (x_train, y_train), (x_test, y_test) = dataset5.load_data(train_size=6000, show=False) for std in [0.1, 0.01, 0.001]: nw = algorithms.GRNN(std=std, verbose=True) nw.train(x_train, y_train) y_pred = nw.predict(x_test) mae = (np.abs(y_test - y_pred)).mean() plt.plot(x_test, y_test, 'b.', label='real') plt.plot(x_test, y_pred, 'r.', label='fit') plt.legend(loc='upper right') plt.title('GRNN aprox with neupy\nstd = %.4f\nmae = %.3f' % (std,mae)) plt.show()
def get_index(poss_code): for i in range(poss_code.__len__()): if poss_code[i] == 1: return i if __name__ == '__main__': epochs = 100 step = 0.5 train_size = 4000 goal_loss = 0.01 (x_train, y_train), (x_test, y_test) = dataset5.load_data(train_size=train_size, mode=1) data = zip(x_train, y_train) for m in [5]: sofm = algorithms.SOFM(n_inputs=2, n_outputs=m * m, step=step, show_epoch=20, verbose=True, learning_radius=1, features_grid=(m, m, 1), epoch_end_signal=on_epoch_end) sofm.train(data, epochs=10)