Пример #1
0
                                syntype=PSET.connParamsExtrinsic['syntype'],
                                weight=weightfun(**weightargs),
                                **synparams)
             syn.set_spike_times_w_netstim(interval=1000. / f)
     
 
 
 # connect pre and post-synaptic populations with some connectivity and
 # weight of connections and other connection parameters:
 total_conncount = 0
 total_syncount = 0
 for i, pre in enumerate(PSET.populationParameters['me_type']):
     for j, post in enumerate(PSET.populationParameters['me_type']):
         # boolean connectivity matrix between pre- and post-synaptic neurons
         # in each population (postsynaptic on this RANK)
         connectivity = network.get_connectivity_rand(pre=pre, post=post,
                                 connprob=PSET.connParams['connprob'][i][j])
         
         # connect network
         (conncount, syncount) = network.connect(
                         pre=pre, post=post,
                         connectivity=connectivity,
                         syntype=PSET.connParams['syntypes'][i][j],
                         synparams=PSET.connParams['synparams'][i][j],
                         weightfun=PSET.connParams['weightfuns'][i][j],
                         weightargs=PSET.connParams['weightargs'][i][j],
                         delayfun=PSET.connParams['delayfuns'][i][j],
                         delayargs=PSET.connParams['delayargs'][i][j],
                         multapsefun=PSET.connParams['multapsefuns'][i][j],
                         multapseargs=PSET.connParams['multapseargs'][i][j],
                         syn_pos_args=PSET.connParams['syn_pos_args'][i][j],
                         save_connections=PSET.save_connections,
Пример #2
0
            for i in idx:
                syn = Synapse(cell=cell, idx=i, syntype='Exp2Syn',
                              weight=0.002,
                              **dict(tau1=0.2, tau2=1.8, e=0.))
                syn.set_spike_times_w_netstim(interval=100.,
                                              seed=np.random.rand() * 2**32 - 1
                                              )


    # create connectivity matrices and connect populations:
    for i, pre in enumerate(population_names):
        for j, post in enumerate(population_names):
            # boolean connectivity matrix between pre- and post-synaptic neurons
            # in each population (postsynaptic on this RANK)
            connectivity = network.get_connectivity_rand(
                pre=pre, post=post,
                connprob=connectionProbability[i][j]
                )

            # connect network:
            (conncount, syncount) = network.connect(
                pre=pre, post=post,
                connectivity=connectivity,
                syntype=synapseModel,
                synparams=synapseParameters[i][j],
                weightfun=np.random.normal,
                weightargs=weightArguments[i][j],
                minweight=minweight,
                delayfun=delayFunction,
                delayargs=delayArguments[i][j],
                mindelay=mindelay,
                multapsefun=multapseFunction,
Пример #3
0
                syn = LFPy.Synapse(cell=cell,
                                   idx=i,
                                   syntype=PSET.connParamsExtrinsic['syntype'],
                                   weight=weightfun(**weightargs),
                                   **synparams)
                syn.set_spike_times_w_netstim(interval=1000. / f)

    # connect pre and post-synaptic populations with some connectivity and
    # weight of connections and other connection parameters:
    total_conncount = 0
    total_syncount = 0
    for i, pre in enumerate(PSET.populationParameters['me_type']):
        for j, post in enumerate(PSET.populationParameters['me_type']):
            # boolean connectivity matrix between pre- and post-synaptic neurons
            # in each population (postsynaptic on this RANK)
            connectivity = network.get_connectivity_rand(
                pre=pre, post=post, connprob=PSET.connParams['connprob'][i][j])

            # connect network
            (conncount, syncount) = network.connect(
                pre=pre,
                post=post,
                connectivity=connectivity,
                syntype=PSET.connParams['syntypes'][i][j],
                synparams=PSET.connParams['synparams'][i][j],
                weightfun=PSET.connParams['weightfuns'][i][j],
                weightargs=PSET.connParams['weightargs'][i][j],
                delayfun=PSET.connParams['delayfuns'][i][j],
                delayargs=PSET.connParams['delayargs'][i][j],
                multapsefun=PSET.connParams['multapsefuns'][i][j],
                multapseargs=PSET.connParams['multapseargs'][i][j],
                syn_pos_args=PSET.connParams['syn_pos_args'][i][j],
Пример #4
0
        for cell in network.populations[name].cells:
            idx = cell.get_rand_idx_area_norm(section='allsec', nidx=64)
            for i in idx:
                syn = Synapse(cell=cell, idx=i, syntype='Exp2Syn',
                              weight=0.002,
                              **dict(tau1=0.2, tau2=1.8, e=0.))
                syn.set_spike_times_w_netstim(interval=200.)


    # create connectivity matrices and connect populations:
    for i, pre in enumerate(population_names):
        for j, post in enumerate(population_names):
            # boolean connectivity matrix between pre- and post-synaptic neurons
            # in each population (postsynaptic on this RANK)
            connectivity = network.get_connectivity_rand(
                pre=pre, post=post,
                connprob=connectionProbability[i][j]
                )

            # connect network:
            (conncount, syncount) = network.connect(
                pre=pre, post=post,
                connectivity=connectivity,
                syntype=synapseModel,
                synparams=synapseParameters[i][j],
                weightfun=np.random.normal,
                weightargs=weightArguments[i][j],
                minweight=minweight,
                delayfun=delayFunction,
                delayargs=delayArguments[i][j],
                mindelay=mindelay,
                multapsefun=multapseFunction,