def __init__(self, featureDimension, alpha, lambda_, createTime, NoiseScale, delta_1, delta_2, init="zero"): LinUCBUserStruct.__init__(self, featureDimension=featureDimension, alpha=alpha, lambda_=lambda_, NoiseScale=NoiseScale, init=init) self.alpha = alpha self.fail = 0.0 self.success = 0.0 self.failList = [] self.plays = 0.0 self.updates = 0.0 self.emp_loss = 1.0 self.createTime = createTime self.time = createTime self.lambda_ = lambda_ self.NoiseScale = NoiseScale self.sigma = 1.e-2 #Used in the high probability bound, i.e, with probability at least (1 - sigma) the confidence bound. So sigma should be very small self.model_id = createTime self.ratio = 0.0 self.badness = 0.0 self.badness_CB = 0.5 self.active = True self.update_num = 0.0 self.delta_1 = delta_1 self.delta_2 = delta_2 self.history = [] self.clicks = []
def __init__(self, featureDimension, lambda_, RankoneInverse=False, nIn=25, nOut=25): LinUCBUserStruct.__init__(self, featureDimension=featureDimension, lambda_=lambda_, RankoneInverse=RankoneInverse) self.reward = 0 self.W = theano.shared(value=numpy.identity( nIn, dtype=theano.config.floatX), name='W', borrow=True) self.Bias = theano.shared(value=numpy.zeros( (nOut, ), dtype=theano.config.floatX), name='Bias', borrow=True) # 计算加入权重矩阵之后的评分预估值 self.estimateReward = [] # 取出预估评分值中的最高值,作为预测item分值 self.recommendReward = 0 # parameters of the model self.params = [self.W, self.Bias] # keep track of model input # self.inputMean = inputMean # self.inputBias = inputBias # learningRate 我随机取的一个数字,应该还需要随后继续做调整 self.learningRate = 0.13
def __init__(self, featureDimension, lambda_): LinUCBUserStruct.__init__(self, featureDimension=featureDimension, lambda_=lambda_) self.learn_stats = articleAccess()
def __init__(self, featureDimension, lambda_): LinUCBUserStruct.__init__(self, featureDimension= featureDimension, lambda_ = lambda_) self.reward = 0
def __init__(self, featureDimension, lambda_): LinUCBUserStruct.__init__(self, featureDimension= featureDimension, lambda_ = lambda_) self.learn_stats = articleAccess()
def __init__(self, featureDimension, lambda_, RankoneInverse=False): LinUCBUserStruct.__init__(self, featureDimension=featureDimension, lambda_=lambda_, RankoneInverse=RankoneInverse) self.reward = 0
def __init__(self, featureDimension, lambda_, RankoneInverse = False): LinUCBUserStruct.__init__(self, featureDimension= featureDimension, lambda_ = lambda_, RankoneInverse = RankoneInverse) self.reward = 0
def __init__(self, featureDimension, lambda_, RankoneInverse = False): LinUCBUserStruct.__init__(self, featureDimension= featureDimension, lambda_ = lambda_, RankoneInverse = RankoneInverse) self.learn_stats = articleAccess()