Пример #1
0
def generate_spectrum_from_RDC(filename,
                               numFrames=500,
                               numADCSamples=128,
                               numTxAntennas=3,
                               numRxAntennas=4,
                               numLoopsPerFrame=128,
                               numAngleBins=64,
                               chirpPeriod=0.06,
                               logGabor=False,
                               accumulate=True,
                               save_full=False):
    numChirpsPerFrame = numTxAntennas * numLoopsPerFrame

    # =============================================================================
    #     numADCSamples = number of range bins
    #     numLoopsPerFrame = number of doppler bins
    # =============================================================================

    range_resolution, bandwidth = dsp.range_resolution(numADCSamples)
    doppler_resolution = dsp.doppler_resolution(bandwidth)

    if filename[-4:] != '.bin':
        filename += '.bin'

    adc_data = np.fromfile(filename, dtype=np.int16)
    adc_data = adc_data.reshape(numFrames, -1)
    adc_data = np.apply_along_axis(DCA1000.organize,
                                   1,
                                   adc_data,
                                   num_chirps=numChirpsPerFrame,
                                   num_rx=numRxAntennas,
                                   num_samples=numADCSamples)
    print("Data Loaded!")

    dataCube = adc_data
    micro_doppler_data = np.zeros((numFrames, numLoopsPerFrame, numADCSamples),
                                  dtype=np.float64)
    theta_data = np.zeros((numFrames, numLoopsPerFrame,
                           numTxAntennas * numRxAntennas, numADCSamples),
                          dtype=np.complex)

    for i, frame in enumerate(dataCube):
        # (2) Range Processing
        from mmwave.dsp.utils import Window

        radar_cube = dsp.range_processing(frame,
                                          window_type_1d=Window.BLACKMAN)
        assert radar_cube.shape == (
            numChirpsPerFrame, numRxAntennas,
            numADCSamples), "[ERROR] Radar cube is not the correct shape!"

        # (3) Doppler Processing
        det_matrix, theta_data[i] = dsp.doppler_processing(
            radar_cube,
            num_tx_antennas=3,
            clutter_removal_enabled=True,
            window_type_2d=Window.HAMMING)

        # --- Shifts & Store
        det_matrix_vis = np.fft.fftshift(det_matrix, axes=1)
        micro_doppler_data[i, :, :] = det_matrix_vis
        # Data should now be ready. Needs to be in micro_doppler_data, a 3D-numpy array with shape [numDoppler, numRanges, numFrames]

        # LOG GABOR
        if logGabor:
            if accumulate:
                image = micro_doppler_data.sum(axis=1).T
            else:
                image = micro_doppler_data.T

            from LogGabor import LogGabor
            import holoviews as hv

            lg = LogGabor("default_param.py")
            lg.set_size(image)
            lg.pe.datapath = 'database/'

            image = lg.normalize(image, center=True)

            # display input image
            # hv.Image(image)

            # display log gabor'd image
            image = lg.whitening(image) * lg.mask
            hv.Image(image)

            uDoppler = image
        elif accumulate:
            uDoppler = micro_doppler_data.sum(axis=1).T
        else:
            uDoppler = micro_doppler_data.T

    if save_full:
        return range_resolution, doppler_resolution, uDoppler, theta_data
    else:
        return range_resolution, doppler_resolution, uDoppler
        import holoviews as hv
        import os
        fig_width = 12
        figsize=(fig_width, .618*fig_width)

        lg = LogGabor("default_param.py")
        lg.set_size(image)
        lg.pe.datapath = 'database/'

        image = lg.normalize(image, center=True)

        # display input image
        # hv.Image(image)

        # display log gabor'd image
        image = lg.whitening(image)*lg.mask
        hv.Image(image)

        uDoppler = image
    elif accumulate:
        uDoppler = micro_doppler_data.sum(axis=1).T
    else:
        uDoppler = micro_doppler_data[:,80,:].T
    

    plt.figure(1)
    plt.title("micro-Doppler Accumulated")
    plt.ylabel("Velocity (m/s)")
    plt.xlabel("Time (seconds)")
    plt.imshow(uDoppler,origin='lower',extent=(0,chirpPeriod*micro_doppler_data[:,120,:].shape[0],-micro_doppler_data[:,120,:].shape[1]*doppler_resolution/2,micro_doppler_data[:,120,:].shape[1]*doppler_resolution/2))
#