def fitpred_new(pop, Optimizer): """Predator function to identify similar structures based on energy and replace one with new structure. """ fitlist = [one.fitness for one in pop] nfitlist, nindices = remove_duplicates(fitlist, Optimizer.demin) STR = '' newpop = [] if len(nfitlist) != len(fitlist): STR += 'Predator: Removed total of ' + repr( len(fitlist) - len(nfitlist)) + ' from population\n' otherlist = [] for i in range(len(pop)): if i not in nindices: STR += 'Predator: Removed ' + repr(pop[i].history_index) + '\n' otherlist.append(pop[i]) else: newpop.append(pop[i]) while len(newpop) < Optimizer.nindiv: if Optimizer.structure == 'Defect' or Optimizer.structure == 'Cluster': ind = gen_pop_box(Optimizer.atomlist, Optimizer.size) elif Optimizer.structure == 'Crystal': outts = gen_pop_box(Optimizer.atomlist, Optimizer.size, Optimizer.cell_shape_options) ind = outts[0] elif Optimizer.structure == 'Surface': mutopto = Optimizer.mutation_options Optimizer.mutation_options = ['Lattice_Alteration_rdrd'] topind = random.choice(pop)[0].copy() ind, scheme = moves_switch(topind, Optimizer) Optimizer.mutation_options = mutopto individ = Individual(ind) #CHECK THIS LATER!! MAY NEED TO ADD MORE PROPERTIES!! individ.energy = 1000 individ.fitness = 1000 newpop.append(individ) STR += 'Predator: Adding mutated duplicates to new pop history=' + individ.history_index + '\n' nindices.append(individ.index) nindices.sort() if Optimizer.natural_selection_scheme == 'fussf': for ind in newpop: if ind.fingerprint == 0: ind.fingerprint = get_fingerprint(Optimizer, ind, Optimizer.fpbin, Optimizer.fpcutoff) if 'lambda,mu' in Optimizer.algorithm_type: try: mark = [ index for index, n in enumerate(nindices) if n > Optimizer.nindiv - 1 ][0] except: mark = Optimizer.nindiv Optimizer.mark = mark pop, str1 = lambdacommamu.lambdacommamu(newpop, Optimizer) STR += str1 else: pop = selection_switch(newpop, Optimizer.nindiv, Optimizer.natural_selection_scheme, Optimizer) pop = get_best(pop, len(pop)) return pop, STR
def fitpred_new(pop,Optimizer): """Predator function to identify similar structures based on energy and replace one with new structure. """ fitlist = [one.fitness for one in pop] nfitlist, nindices = remove_duplicates(fitlist, Optimizer.demin) STR = '' newpop = [] if len(nfitlist) != len(fitlist): STR+='Predator: Removed total of '+repr(len(fitlist)-len(nfitlist))+' from population\n' otherlist = [] for i in range(len(pop)): if i not in nindices: STR+='Predator: Removed '+repr(pop[i].history_index)+'\n' otherlist.append(pop[i]) else: newpop.append(pop[i]) while len(newpop) < Optimizer.nindiv: if Optimizer.structure=='Defect' or Optimizer.structure=='Cluster': ind=gen_pop_box(Optimizer.atomlist,Optimizer.size) elif Optimizer.structure=='Crystal': outts=gen_pop_box(Optimizer.atomlist,Optimizer.size,Optimizer.cell_shape_options) ind=outts[0] elif Optimizer.structure=='Surface': mutopto=Optimizer.mutation_options Optimizer.mutation_options=['Lattice_Alteration_rdrd'] topind=random.choice(pop)[0].copy() ind, scheme = moves_switch(topind,Optimizer) Optimizer.mutation_options=mutopto individ=Individual(ind) #CHECK THIS LATER!! MAY NEED TO ADD MORE PROPERTIES!! individ.energy=1000 individ.fitness=1000 newpop.append(individ) STR+='Predator: Adding mutated duplicates to new pop history='+individ.history_index+'\n' nindices.append(individ.index) nindices.sort() if Optimizer.natural_selection_scheme=='fussf': for ind in newpop: if ind.fingerprint == 0: ind.fingerprint = get_fingerprint(Optimizer,ind,Optimizer.fpbin,Optimizer.fpcutoff) if 'lambda,mu' in Optimizer.algorithm_type: try: mark = [ index for index,n in enumerate(nindices) if n > Optimizer.nindiv-1][0] except: mark = Optimizer.nindiv Optimizer.mark = mark pop, str1 = lambdacommamu.lambdacommamu(newpop, Optimizer) STR+=str1 else: pop = selection_switch(newpop, Optimizer.nindiv, Optimizer.natural_selection_scheme, Optimizer) pop = get_best(pop,len(pop)) return pop, STR
def get_population(Optimizer): """ Function to generate a population of structures. Inputs: Optimizer = structopt Optimizer class object Outputs: pop = List of structopt Individual class objects containing new structures. """ index1 = 0 pop = [] for i in range(Optimizer.nindiv): if Optimizer.structure == 'Defect': individ = get_defect_indiv(Optimizer) elif Optimizer.structure == 'Surface': individ = get_surface_indiv(Optimizer) elif Optimizer.structure == 'Crystal': individ = get_crystal_indiv(Optimizer) else: if 'sphere' in Optimizer.generate_flag: ind = gen_pop_sphere(Optimizer.atomlist,Optimizer.size) else: ind = gen_pop_box(Optimizer.atomlist,Optimizer.size) individ = Individual(ind) individ.index = index1 if Optimizer.genealogy: individ.history_index = repr(index1) Optimizer.output.write('Generated cluster individual with natoms = '+ repr(individ[0].get_number_of_atoms())+'\n') pop.append(individ) index1=index1+1 # Generate new atomlist concentrations based on cluster+box if Optimizer.structure == 'Defect': if Optimizer.alloy: concents=[] for ind in pop: cs=[] for sym,c,u,m in Optimizer.atomlist: sylen=[atm for atm in ind[0] if atm.symbol==sym] cs.append(len(sylen)) concents.append(cs) natmlist=[0]*len(Optimizer.atomlist) for i in range(len(concents[0])): alls=[cs[i] for cs in concents] avgall=int(sum(alls)/len(alls)) if avgall>=Optimizer.atomlist[i][1]: natmlist[i]=(Optimizer.atomlist[i][0], avgall, Optimizer.atomlist[i][2],Optimizer.atomlist[i][3]) else: natmlist[i]=(Optimizer.atomlist[i][0], Optimizer.atomlist[i][1], Optimizer.atomlist[i][2],Optimizer.atomlist[i][3]) else: natmlist=[0]*len(Optimizer.atomlist) for i in range(len(Optimizer.atomlist)): atms1=[inds for inds in pop[0][0] if inds.symbol==Optimizer.atomlist[i][0]] natmlist[i]=(Optimizer.atomlist[i][0], len(atms1),Optimizer.atomlist[i][2], Optimizer.atomlist[i][3]) Optimizer.atomlist=natmlist Optimizer.output.write('\n\nNew atomlist concentrations based on cluster+box = '+ repr(Optimizer.atomlist)+'\n') return pop
def get_crystal_indiv(Optimizer): """ Function to generate an structopt Individual class object containing a crystal structure. Inputs: Optimizer = structopt Optimizer class Outputs: individ = structopt Individual class object containing crystal structure data """ if 'sphere' in Optimizer.generate_flag: outts = gen_pop_sphere(Optimizer.atomlist,Optimizer.size,Optimizer.cell_shape_options) else: outts = gen_pop_box(Optimizer.atomlist,Optimizer.size,Optimizer.cell_shape_options) ind = outts[0] Optimizer.output.write(outts[1]) individ = Individual(ind) return individ
def get_defect_indiv_random(Optimizer): """ Function to generate a structopt Individual class structure with a defect structure. Inputs: Optimizer = structopt Optimizer class object Outputs: individ = structopt Individual class object containing defect structure data """ #Initialize Bulk - Generate or load positions of bulk solid if not Optimizer.solidbulk: if 'Island_Method' not in Optimizer.algorithm_type: outfilename = os.path.join( os.path.join(os.getcwd(), Optimizer.filename), 'Bulkfile.xyz') else: from mpi4py import MPI rank = MPI.COMM_WORLD.Get_rank() outfilename = os.path.join( os.path.join(os.getcwd(), Optimizer.filename + '-rank' + repr(rank)), 'Bulkfile.xyz') if Optimizer.evalsolid: if Optimizer.parallel: from MAST.structopt.tools.setup_calculator import setup_calculator Optimizer.calc = setup_calculator(Optimizer) bulk1, PureBulkEnpa, stro = gen_solid(Optimizer.solidfile, Optimizer.solidcell, outfilename, Optimizer.calc, Optimizer.calc_method) Optimizer.output.write(stro) else: bulk1 = gen_solid(Optimizer.solidfile, Optimizer.solidcell, outfilename) PureBulkEnpa = 0 natomsbulk = len(bulk1) Optimizer.solidbulk = bulk1.copy() Optimizer.purebulkenpa = PureBulkEnpa Optimizer.natomsbulk = natomsbulk # Identify nearby atoms for region 2 inclusion bulk = Optimizer.solidbulk.copy() bulkcom = bulk.get_center_of_mass() bulk.translate(-bulkcom) if Optimizer.sf != 0: bulk.append(Atom(position=[0, 0, 0])) nbulk = Atoms(pbc=True, cell=bulk.get_cell()) nr2 = Atoms(pbc=True, cell=bulk.get_cell()) for i in range(len(bulk) - 1): dist = bulk.get_distance(-1, i) if dist <= Optimizer.sf: nr2.append(bulk[i]) else: nbulk.append(bulk[i]) else: nbulk = bulk.copy() nr2 = Atoms(pbc=True, cell=bulk.get_cell()) #Update atom list with atoms in region 2 natlist = [] for sym, c, m, u in Optimizer.atomlist: atsym = [atm for atm in nr2 if atm.symbol == sym] natlist.append((sym, len(atsym), m, u)) # Generate random individual and region 2 if 'sphere' in Optimizer.generate_flag: ind = gen_pop_sphere(Optimizer.atomlist, Optimizer.size) elif 'dumbbell' in Optimizer.generate_flag: ind = Atoms(cell=[Optimizer.size for i in range(3)], pbc=True) for sym, c, m, u in Optimizer.atomlist: if c > 0: dums = generate_dumbbells(c, dumbbellsym=sym, nindiv=1, solid=Optimizer.solidbulk, size=Optimizer.size)[0] ind.extend(dums) else: ind = gen_pop_box(Optimizer.atomlist, Optimizer.size) nnr2 = gen_pop_sphere(natlist, Optimizer.sf * 2.0) nnr2.translate([-Optimizer.sf, -Optimizer.sf, -Optimizer.sf]) nnr2.set_pbc(True) nnr2.set_cell(bulk.get_cell()) # Initialize class individual with known values individ = Individual(ind) individ.purebulkenpa = Optimizer.purebulkenpa individ.natomsbulk = Optimizer.natomsbulk # Combine individual with R2 icom = ind.get_center_of_mass() ind.translate(-icom) ind.extend(nnr2) ind.set_pbc(True) ind.set_cell(bulk.get_cell()) # Recenter structure nbulk.translate(bulkcom) ind.translate(bulkcom) individ[0] = ind.copy() individ.bulki = nbulk.copy() individ.bulko = nbulk.copy() bulk = nbulk.copy() bul = bulk.copy() for atm in individ[0]: bul.append(atm) indices = [] for sym, c, m, u in Optimizer.atomlist: if c < 0: if Optimizer.randvacst: alist = [one for one in bul if one.symbol == sym] count = abs(c) while count > 0: indices.append(random.choice(alist).index) count -= 1 else: pos = individ[0][0:Optimizer.natoms].get_center_of_mass() count = abs(c) bul.append(Atom(position=pos)) alist = [one for one in bul if one.symbol == sym] alistd = [(bul.get_distance(len(bul) - 1, one.index), one.index) for one in alist] alistd.sort(reverse=True) bul.pop() while count > 0: idx = alistd.pop()[1] indices.append(idx) count -= 1 if len(indices) != 0: nbulklist = [ at for at in bul if at.index not in indices and at.index < len(bulk) ] nalist = [ at for at in bul if at.index not in indices and at.index >= len(bulk) ] bulkn = Atoms(cell=bulk.get_cell(), pbc=True) for atm in nbulklist: bulkn.append(atm) individ.bulki = bulkn.copy() individ.bulko = bulkn.copy() newind = Atoms() for atm in nalist: newind.append(atm) newind.set_cell(individ[0].get_cell()) newind.set_pbc(True) individ[0] = newind return individ
def random_replacement(indiv, Optimizer): """Move function to replace selection of atoms with randomly generated group Inputs: indiv = Individual class object to be altered Optimizer = Optimizer class object with needed parameters Outputs: indiv = Altered Individual class object """ if 'MU' in Optimizer.debug: debug = True else: debug = False if Optimizer.structure == 'Defect': if Optimizer.isolate_mutation: atms, indb, vacant, swap, stro = find_defects( indiv[0], Optimizer.solidbulk, 0) else: atms = indiv[0].copy() else: atms = indiv[0].copy() nat = len(atms) if nat != 0: #Select number of atoms to replace if nat <= 1: natrep2 = 1 natrep1 = 0 elif nat <= 5: natrep2 = 2 natrep1 = 0 else: natrep1 = random.randint(1, nat / 2) while True: natrep2 = random.randint(2, nat / 2) if natrep2 != natrep1: break natrep = abs(natrep2 - natrep1) #Select random position in cluster maxcell = numpy.maximum.reduce(atms.get_positions()) mincell = numpy.minimum.reduce(atms.get_positions()) pt = [ random.uniform(mincell[0], maxcell[0]), random.uniform(mincell[1], maxcell[1]), random.uniform(mincell[2], maxcell[2]) ] #Get distance of atoms from random point atpt = Atom(position=pt) atms.append(atpt) dist = [] for i in range(len(atms) - 1): dist.append(atms.get_distance(i, len(atms) - 1)) atms.pop() dlist = zip(dist, atms) dlist = sorted(dlist, key=lambda one: one[0], reverse=True) # Select atoms closest to random point atmsr = Atoms() indexlist = [] for i in range(natrep): atmsr.append(dlist[i][1]) indexlist.append(dlist[i][1].index) natomlist = [0] * len(Optimizer.atomlist) for i in range(len(Optimizer.atomlist)): atms1 = [ inds for inds in atmsr if inds.symbol == Optimizer.atomlist[i][0] ] natomlist[i] = (Optimizer.atomlist[i][0], len(atms1), Optimizer.atomlist[i][2], Optimizer.atomlist[i][3]) nsize = max( numpy.maximum.reduce(atmsr.get_positions()) - numpy.minimum.reduce(atmsr.get_positions())) repcenter = atmsr.get_center_of_mass() atmsn = gen_pop_box(natomlist, nsize) atmsn.translate(repcenter) #Update individual with new atom positions for i in range(len(indexlist)): index = indexlist[i] atms[index].position = atmsn[i].position if Optimizer.structure == 'Defect': if Optimizer.isolate_mutation: atms.extend(indb) indiv[0] = atms.copy() else: natrep = 0 pt = 0 Optimizer.output.write( 'Random Group Replacement Mutation performed on individual\n') Optimizer.output.write('Index = ' + repr(indiv.index) + '\n') Optimizer.output.write('Number of atoms replaced = ' + repr(natrep) + '\n') Optimizer.output.write('Geometry point = ' + repr(pt) + '\n') Optimizer.output.write(repr(indiv[0]) + '\n') muttype = 'RGR' + repr(natrep) if indiv.energy == 0: indiv.history_index = indiv.history_index + 'm' + muttype else: indiv.history_index = repr(indiv.index) + 'm' + muttype return indiv
def get_defect_indiv_random(Optimizer): """ Function to generate a structopt Individual class structure with a defect structure. Inputs: Optimizer = structopt Optimizer class object Outputs: individ = structopt Individual class object containing defect structure data """ #Initialize Bulk - Generate or load positions of bulk solid if not Optimizer.solidbulk: if 'Island_Method' not in Optimizer.algorithm_type: outfilename = os.path.join(os.path.join(os.getcwd(),Optimizer.filename),'Bulkfile.xyz') else: from mpi4py import MPI rank = MPI.COMM_WORLD.Get_rank() outfilename = os.path.join(os.path.join(os.getcwd(),Optimizer.filename+'-rank'+repr(rank)),'Bulkfile.xyz') if Optimizer.evalsolid: if Optimizer.parallel: from MAST.structopt.tools.setup_calculator import setup_calculator Optimizer.calc = setup_calculator(Optimizer) bulk1, PureBulkEnpa, stro = gen_solid(Optimizer.solidfile, Optimizer.solidcell,outfilename,Optimizer.calc,Optimizer.calc_method) Optimizer.output.write(stro) else: bulk1 = gen_solid(Optimizer.solidfile,Optimizer.solidcell,outfilename) PureBulkEnpa = 0 natomsbulk = len(bulk1) Optimizer.solidbulk = bulk1.copy() Optimizer.purebulkenpa = PureBulkEnpa Optimizer.natomsbulk = natomsbulk # Identify nearby atoms for region 2 inclusion bulk = Optimizer.solidbulk.copy() bulkcom = bulk.get_center_of_mass() bulk.translate(-bulkcom) if Optimizer.sf != 0: bulk.append(Atom(position=[0,0,0])) nbulk = Atoms(pbc=True, cell=bulk.get_cell()) nr2 = Atoms(pbc=True, cell=bulk.get_cell()) for i in range(len(bulk)-1): dist = bulk.get_distance(-1,i) if dist <= Optimizer.sf: nr2.append(bulk[i]) else: nbulk.append(bulk[i]) else: nbulk = bulk.copy() nr2 = Atoms(pbc=True, cell=bulk.get_cell()) #Update atom list with atoms in region 2 natlist = [] for sym,c,m,u in Optimizer.atomlist: atsym = [atm for atm in nr2 if atm.symbol==sym] natlist.append((sym,len(atsym),m,u)) # Generate random individual and region 2 if 'sphere' in Optimizer.generate_flag: ind = gen_pop_sphere(Optimizer.atomlist,Optimizer.size) elif 'dumbbell' in Optimizer.generate_flag: ind = Atoms(cell=[Optimizer.size for i in range(3)], pbc=True) for sym,c,m,u in Optimizer.atomlist: if c > 0: dums = generate_dumbbells(c, dumbbellsym=sym, nindiv=1, solid = Optimizer.solidbulk, size=Optimizer.size)[0] ind.extend(dums) else: ind = gen_pop_box(Optimizer.atomlist,Optimizer.size) nnr2 = gen_pop_sphere(natlist, Optimizer.sf*2.0) nnr2.translate([-Optimizer.sf,-Optimizer.sf,-Optimizer.sf]) nnr2.set_pbc(True) nnr2.set_cell(bulk.get_cell()) # Initialize class individual with known values individ = Individual(ind) individ.purebulkenpa = Optimizer.purebulkenpa individ.natomsbulk = Optimizer.natomsbulk # Combine individual with R2 icom = ind.get_center_of_mass() ind.translate(-icom) ind.extend(nnr2) ind.set_pbc(True) ind.set_cell(bulk.get_cell()) # Recenter structure nbulk.translate(bulkcom) ind.translate(bulkcom) individ[0] = ind.copy() individ.bulki = nbulk.copy() individ.bulko = nbulk.copy() bulk = nbulk.copy() bul = bulk.copy() for atm in individ[0]: bul.append(atm) indices = [] for sym,c,m,u in Optimizer.atomlist: if c < 0: if Optimizer.randvacst: alist = [one for one in bul if one.symbol==sym] count = abs(c) while count > 0: indices.append(random.choice(alist).index) count -= 1 else: pos = individ[0][0:Optimizer.natoms].get_center_of_mass() count = abs(c) bul.append(Atom(position=pos)) alist = [one for one in bul if one.symbol==sym] alistd = [(bul.get_distance(len(bul)-1,one.index),one.index) for one in alist] alistd.sort(reverse=True) bul.pop() while count > 0: idx = alistd.pop()[1] indices.append(idx) count-=1 if len(indices) !=0: nbulklist = [at for at in bul if at.index not in indices and at.index<len(bulk)] nalist = [at for at in bul if at.index not in indices and at.index>=len(bulk)] bulkn = Atoms(cell=bulk.get_cell(),pbc=True) for atm in nbulklist: bulkn.append(atm) individ.bulki = bulkn.copy() individ.bulko = bulkn.copy() newind = Atoms() for atm in nalist: newind.append(atm) newind.set_cell(individ[0].get_cell()) newind.set_pbc(True) individ[0] = newind return individ
def get_population(Optimizer): """ Function to generate a population of structures. Inputs: Optimizer = structopt Optimizer class object Outputs: pop = List of structopt Individual class objects containing new structures. """ index1 = 0 pop = [] for i in range(Optimizer.nindiv): if Optimizer.structure == 'Defect': individ = get_defect_indiv(Optimizer) elif Optimizer.structure == 'Surface': individ = get_surface_indiv(Optimizer) elif Optimizer.structure == 'Crystal': individ = get_crystal_indiv(Optimizer) else: if 'sphere' in Optimizer.generate_flag: ind = gen_pop_sphere(Optimizer.atomlist, Optimizer.size) else: ind = gen_pop_box(Optimizer.atomlist, Optimizer.size) individ = Individual(ind) individ.index = index1 if Optimizer.genealogy: individ.history_index = repr(index1) Optimizer.output.write('Generated cluster individual with natoms = ' + repr(individ[0].get_number_of_atoms()) + '\n') pop.append(individ) index1 = index1 + 1 # Generate new atomlist concentrations based on cluster+box if Optimizer.structure == 'Defect': if Optimizer.alloy: concents = [] for ind in pop: cs = [] for sym, c, u, m in Optimizer.atomlist: sylen = [atm for atm in ind[0] if atm.symbol == sym] cs.append(len(sylen)) concents.append(cs) natmlist = [0] * len(Optimizer.atomlist) for i in range(len(concents[0])): alls = [cs[i] for cs in concents] avgall = int(sum(alls) / len(alls)) if avgall >= Optimizer.atomlist[i][1]: natmlist[i] = (Optimizer.atomlist[i][0], avgall, Optimizer.atomlist[i][2], Optimizer.atomlist[i][3]) else: natmlist[i] = (Optimizer.atomlist[i][0], Optimizer.atomlist[i][1], Optimizer.atomlist[i][2], Optimizer.atomlist[i][3]) else: natmlist = [0] * len(Optimizer.atomlist) for i in range(len(Optimizer.atomlist)): atms1 = [ inds for inds in pop[0][0] if inds.symbol == Optimizer.atomlist[i][0] ] natmlist[i] = (Optimizer.atomlist[i][0], len(atms1), Optimizer.atomlist[i][2], Optimizer.atomlist[i][3]) Optimizer.atomlist = natmlist Optimizer.output.write( '\n\nNew atomlist concentrations based on cluster+box = ' + repr(Optimizer.atomlist) + '\n') return pop
def random_replacement(indiv, Optimizer): """Move function to replace selection of atoms with randomly generated group Inputs: indiv = Individual class object to be altered Optimizer = Optimizer class object with needed parameters Outputs: indiv = Altered Individual class object """ if 'MU' in Optimizer.debug: debug = True else: debug = False if Optimizer.structure=='Defect': if Optimizer.isolate_mutation: atms,indb,vacant,swap,stro = find_defects(indiv[0],Optimizer.solidbulk,0) else: atms = indiv[0].copy() else: atms=indiv[0].copy() nat=len(atms) if nat != 0: #Select number of atoms to replace if nat<=1: natrep2=1 natrep1=0 elif nat<=5: natrep2=2 natrep1=0 else: natrep1=random.randint(1,nat/2) while True: natrep2=random.randint(2,nat/2) if natrep2 != natrep1: break natrep=abs(natrep2 - natrep1) #Select random position in cluster maxcell = numpy.maximum.reduce(atms.get_positions()) mincell = numpy.minimum.reduce(atms.get_positions()) pt=[random.uniform(mincell[0],maxcell[0]),random.uniform(mincell[1],maxcell[1]),random.uniform(mincell[2],maxcell[2])] #Get distance of atoms from random point atpt=Atom(position=pt) atms.append(atpt) dist=[] for i in range(len(atms)-1): dist.append(atms.get_distance(i,len(atms)-1)) atms.pop() dlist=zip(dist,atms) dlist=sorted(dlist, key=lambda one: one[0], reverse=True) # Select atoms closest to random point atmsr=Atoms() indexlist=[] for i in range(natrep): atmsr.append(dlist[i][1]) indexlist.append(dlist[i][1].index) natomlist=[0]*len(Optimizer.atomlist) for i in range(len(Optimizer.atomlist)): atms1=[inds for inds in atmsr if inds.symbol==Optimizer.atomlist[i][0]] natomlist[i]=(Optimizer.atomlist[i][0], len(atms1),Optimizer.atomlist[i][2],Optimizer.atomlist[i][3]) nsize = max(numpy.maximum.reduce(atmsr.get_positions())-numpy.minimum.reduce(atmsr.get_positions())) repcenter = atmsr.get_center_of_mass() atmsn = gen_pop_box(natomlist,nsize) atmsn.translate(repcenter) #Update individual with new atom positions for i in range(len(indexlist)): index=indexlist[i] atms[index].position=atmsn[i].position if Optimizer.structure=='Defect': if Optimizer.isolate_mutation: atms.extend(indb) indiv[0]=atms.copy() else: natrep=0 pt=0 Optimizer.output.write('Random Group Replacement Mutation performed on individual\n') Optimizer.output.write('Index = '+repr(indiv.index)+'\n') Optimizer.output.write('Number of atoms replaced = '+repr(natrep)+'\n') Optimizer.output.write('Geometry point = '+repr(pt)+'\n') Optimizer.output.write(repr(indiv[0])+'\n') muttype='RGR'+repr(natrep) if indiv.energy==0: indiv.history_index=indiv.history_index+'m'+muttype else: indiv.history_index=repr(indiv.index)+'m'+muttype return indiv