Пример #1
0
    def _calc_directors(self, active_dim):
        """Calculate directors as the reciprocal lattice vectors. For 
        orthorombic and triclinic simulation boxes the reciprocal 
        lattice vectors are vectors perpendicular to each face of the
        simulation cell.
        
        Parameters
        ----------
        active_dim : list of int
            Active dimensions each intereger must be either 0 for off or
            1 for on.

        Returns
        -------
        directors : numpy array(=<3,3)
            Directors along which to calculate the wave vector.

        """
        # Get triclinic box vectors
        box_edge_vectors = mdamath.triclinic_vectors(self.universe.dimensions)

        # Calculate reciprocal lattice vectors
        recip_lat_vecs = self._calc_reciprocal_lattice_vectors(
            box_edge_vectors)

        # Remove inactive dimensions
        check_active_dim = [active_dim_i is 0 for active_dim_i in active_dim]
        del_idx_active_dim = [i for i, x in enumerate(check_active_dim) if x]
        directors = np.delete(recip_lat_vecs, del_idx_active_dim, axis=0)

        return directors
Пример #2
0
    def initialize_bm(self, box):
        """
        Store box information and define direct and reciprocal box matrices.
        Rows of the direct matrix are the components of the central cell
        vectors. Rows of the reciprocal matrix are the components of the
        normalized reciprocal lattice vectors. Each row of the reciprocal
        matrix represents the vector normal to the unit cell face
        associated to each axis.
        For instance, in an orthorhombic cell the YZ-plane is associated to
        the X-axis and its normal vector is (1, 0, 0). In a triclinic cell,
        the plane associated to vector ``\vec{a}`` is perpendicular to the
        normalized cross product of ``\vec{b}`` and ``\vec{c}``.

        Parameters
        ----------
        box : array-like or ``None``, optional, default ``None``
          Simulation cell dimensions in the form of
          :attr:`MDAnalysis.trajectory.base.Timestep.dimensions` when
          periodic boundary conditions should be taken into account for
          the calculation of contacts.
        """
        box_type = _box_check(box)
        if box_type == 'ortho':
            a, b, c = box[:3]
            dm = np.array([[a, 0, 0], [0, b, 0], [0, 0, c]], dtype=np.float32)
            rm = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.float32)
        elif box_type in 'tri_box tri_vecs tri_vecs_bad':
            if box_type == 'tri_box':
                dm = triclinic_vectors(box)
            elif box_type == 'tri_vecs':
                dm = box.copy('C')
            else:  # case 'tri_vecs_bad'
                dm = triclinic_vectors(triclinic_box(box[0], box[1], box[2]))
            rm = np.zeros(9, dtype=np.float32).reshape(3, 3)
            rm[0] = np.cross(dm[1], dm[2])
            rm[1] = np.cross(dm[2], dm[0])
            rm[2] = np.cross(dm[0], dm[1])
            for i in range(self.dim):
                rm[i] /= norm(rm[i])  # normalize
        else:
            raise ValueError('Failed to initialize direct/reciprocal matrices')
        self.box = box
        self._dm = dm
        self._rm = rm
Пример #3
0
    def __init__(self, dims):
        assert len(dims) == 3 or len(
            dims) == 6, "Invalid number of box dimensions"

        if len(dims) == 3:
            dims = [*dims, 90., 90., 90]
        self.dims = np.array(dims)
        self.h = triclinic_vectors(dims)
        self.hinv = np.linalg.inv(self.h)

        boxtype, box = check_box(self.dimensions)
        self.boxtype = boxtype
Пример #4
0
 def _write_dimensions(self, dimensions):
     """Convert dimensions to triclinic vectors, convert lengths to native
     units and then write the dimensions section
     """
     if self.convert_units:
         triv = self.convert_pos_to_native(mdamath.triclinic_vectors(
                                           dimensions),inplace=False)
     self.f.write('\n')
     self.f.write('{:f} {:f} xlo xhi\n'.format(0., triv[0][0]))
     self.f.write('{:f} {:f} ylo yhi\n'.format(0., triv[1][1]))
     self.f.write('{:f} {:f} zlo zhi\n'.format(0., triv[2][2]))
     if any([triv[1][0], triv[2][0], triv[2][1]]):
         self.f.write('{xy:f} {xz:f} {yz:f} xy xz yz\n'.format(
             xy=triv[1][0], xz=triv[2][0], yz=triv[2][1]))
     self.f.write('\n')
Пример #5
0
def count_counterions(u, ion_group, counterion_group, pore_group, framestart, nframes_per_window):
    count = 0


    for i, frame in enumerate(u.trajectory[framestart : framestart + nframes_per_window]):
        box_vectors = np.mat(triclinic_vectors(u.trajectory.dimensions))
        box_inv = linalg.inv(box_vectors)

        reference_atom = pore_group[0].position
        z_start = reference_atom
        z_end = reference_atom
        z_start_atom = pore_group[0]
        z_end_atom = pore_group[0]

        for atom in pore_group[1:]:
            next_atom_minimum_disp = minimum_image_disp(box_vectors, reference_atom - atom.position, box_inv)
            next_atom_pos = reference_atom - next_atom_minimum_disp

            if next_atom_pos[2] < z_start[2]:
                z_start = next_atom_pos
                z_start_aotm = atom
            if next_atom_pos[2] > z_end[2]:
                z_end = next_atom_pos
                z_end_atom = atom

        z_center_of_pore = (z_start + z_end) / 2 # these two atoms' positions are in the same periodic image

        print_ion = False
        for cion in counterion_group:
            z_pos = reference_atom - minimum_image_disp(box_vectors, reference_atom - cion.position, box_inv)
            if z_pos[2] > z_start[2] and z_pos[2] < z_end[2]:
                count += 1
                print_ion = True

        if print_ion:
            ion_minimum_image_disp = minimum_image_disp(box_vectors, ion_group[0].position - z_center_of_pore, box_inv)
            print(ion_minimum_image_disp[2])

    return count
Пример #6
0
 def test_set_triclinic_vectors(self):
     ref_vec = triclinic_vectors(self.newbox)
     self.ts.triclinic_dimensions = ref_vec
     assert_equal(self.ts.dimensions, self.newbox)
     assert_allclose(self.ts._unitcell, self.unitcell)
Пример #7
0
 def test_triclinic_vectors(self):
     assert_allclose(self.ts.triclinic_dimensions,
                     triclinic_vectors(self.ts.dimensions))
Пример #8
0
 def test_set_triclinic_vectors(self, ts):
     ref_vec = triclinic_vectors(self.newbox)
     ts.triclinic_dimensions = ref_vec
     assert_equal(ts.dimensions, self.newbox)
     assert_equal(ts._unitcell, self.unitcell)
Пример #9
0
 def test_set_triclinic_vectors(self):
     ref_vec = triclinic_vectors(self.newbox)
     self.ts.triclinic_dimensions = ref_vec
     assert_equal(self.ts.dimensions, self.newbox)
     assert_allclose(self.ts._unitcell, self.unitcell)
Пример #10
0
 def test_triclinic_vectors(self):
     assert_allclose(self.ts.triclinic_dimensions,
                     triclinic_vectors(self.ts.dimensions))
Пример #11
0
# Displacement vector subtraction with Periodic Boundary Conditions
def vector(posA, posB, boxvec):
    vec = posA - posB
    for i in range(3):
        dot = np.dot(vec, boxvec[i]) / np.dot(boxvec[i], boxvec[i])
        if dot > .5:
            vec -= boxvec[i]
        elif dot < -.5:
            vec += boxvec[i]
    return vec


fout = open(folder + 'cationpi.dat', 'w')
for ts in u.trajectory:
    sys.stdout.write('\rTime = %d' % u.trajectory.time)
    boxvec = mdamath.triclinic_vectors(u.dimensions)
    for ipi in range(npigroup):
        pigroup = pigroups[ipi]
        picenter = pigroup.centroid(pbc=True)
        for icat in range(ncat):
            cation = cations[icat]
            dist = distances.calc_bonds(coords1=cation.position,
                                        coords2=picenter,
                                        box=u.dimensions)
            if dist < 7.0:
                vec = vector(cation.position, picenter, boxvec)
                v1 = vector(pigroup.positions[0], pigroup.positions[5], boxvec)
                v2 = vector(pigroup.positions[1], pigroup.positions[4], boxvec)
                v3 = vector(pigroup.positions[2], pigroup.positions[3], boxvec)
                n1 = mdamath.normal(v1, v2)
                n2 = mdamath.normal(v3, v1)
Пример #12
0
import pytest
import numpy as np
from numpy.testing import assert_equal, assert_almost_equal

from MDAnalysis.lib.pkdtree import PeriodicKDTree
from MDAnalysis.lib.mdamath import triclinic_vectors, triclinic_box
from MDAnalysis.lib.distances import (_box_check, transform_RtoS,
                                      transform_StoR, apply_PBC)

#
# Testing initialization with different boxes.
#
boxes_1 = (np.array([1, 2, 3, 90, 90, 90], dtype=np.float32),  # ortho
         np.array([1, 2, 3, 30, 45, 60], dtype=np.float32),  # tri_box
         triclinic_vectors(  # tri_vecs
             np.array([1, 2, 3, 90, 90, 45], dtype=np.float32)),
         np.array([[0.5, 0.9, 1.9],  # tri_vecs_bad
                   [2.0, 0.4, 0.1],
                   [0.0, 0.6, 0.5]], dtype=np.float32)
         )
rec_m = (np.array([[1, 0, 0],
                   [0, 1, 0],
                   [0, 0, 1]], dtype=np.float32),
         np.array([[0.67044002, -0.38707867, -0.6329931],
                   [0, 0.54741204, -0.83686334],
                   [0, 0, 1]], dtype=np.float32),
         np.array([[0.707106829, -0.707106829, 0],
                   [0, 1, 0],
                   [0, 0, 1]], dtype=np.float32),
         np.array([[0.42783618, -0.16049984, -0.88949198],
                   [-0, 0.95654362, 0.29158944],
Пример #13
0
 def test_set_triclinic_vectors(self, ts):
     ref_vec = triclinic_vectors(self.newbox)
     ts.triclinic_dimensions = ref_vec
     assert_equal(ts.dimensions, self.newbox)
     assert_equal(ts._unitcell, self.unitcell)